22 research outputs found

    Novel, simple, and environmentally safe method for wastewater pollutant removal

    Get PDF
    In this work, a new methodology has been developed for the elimination of cobalt, nickel and a mixture of both metals from synthetic wastewater in a continuous way. This methodology consists of the electrochemical formation of ferrites of these metals through the oxidation of iron sheets and the reduction of water. Two critical process parameters, current densities and initial pollutant concentration, were analysed. An initial batch prototype resulted in efficiencies on the order of 98% under conditions of applied densities of 50 mA/cm2 and concentrations of both metals of until 100 ppm of the ions. The obtained particles have been characterized by X-ray diffraction to determine the formation of ferrites without the appearance of secondary phases. The formed particle sizes are approximately 30 nm, with hemispherical or flower-like shapes. A flow system prototype was designed for the recirculation of the solution with 100 ppm of both contaminating metals, obtaining approximately 90% recovery with an easy magnetic harvesting. © 2021 The Author

    Cation distribution of cobalt ferrite electrosynthesized nanoparticles: A methodological comparison

    Full text link
    Final publication at http://doi.org/10.1016/j.jallcom.2017.12.342, © 2017 Elsevier B.V.The present work seeks to analyse the structural and magnetic properties of cobalt ferrite nanoparticles obtained by electrochemical synthesis by high-resolution transmission electronic microscopy (HRTEM), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), neutron diffraction (ND) and SQUID magnetometer. The cationic distribution is analyzed by different techniques. The inversion degree determined by the most accurate measurements was 0.73(1), and the formula for the nanoparticles therefore was (↑Co 0.27 Fe 0.73 )[↓Co 0.73 Fe 1.27 ]O 4 . The magnetic moment found from DC and Mössbauer spectroscopy measurements was 3.8(3) μB, and the coercivity was 7870 Oe at 100 K.This work is supported by the MINECO/FEDER Project MAT2015-67557-C2-2-

    High strength stainless steel 14301 for prestressed concrete structures protection

    Get PDF
    High Strength Stainless Steels (HSSS) are being developed with the aim to improve corrosion resistance of prestressed concrete structures in aggressive environments. In the present paper focus is given to mechanical and corrosion performance of a HSSS type 14301. The ability of passivation in alkaline media and the risk of local corrosion (pitting) in presence of chlorides, has been determined. Besides, the response of the stainless steel submitted to mechanical strains similar to those in service is considered with respect to the risk of corrosion, Stress Corrosion Cracking (SCC) and Hydrogen Embrittlement (HE). The cold-drawn HSSS 14301 shows higher tolerance to chloride ion than conventional prestressing steel. The local corrosion becomes significant for chloride contents above 0.75 M. The applied load moves pitting corrosion initiation at lower concentrations of chlorides. The pitting enhances risk for SCC developing, although the steel is more resistance to HE in comparison with conventional presstressing ste

    Highly efficient and selective extraction of uranium from aqueous solution by a magnetic device: succinyl-ß-cyclodextrin-APTES@maghemite nanoparticles

    Get PDF
    The removal of radio-elements, notably uranium, from waste-waters is crucial for public health and environmental remediation. To this end, succinyl-ß-cyclodextrin (SßCD) is grafted onto maghemite nanoparticles (NPs) synthesized by the polyol method. The nanocomposite was well characterized. The adsorption of U(VI) by SßCD-APTES@Fe2O3 is pH-dependent with a maximum at pH 6. Adsorption occurs mainly by complex formation and displays a very good selectivity for U(VI) compared to other cations such as Cs+, K+, Na+, Mg2+ and Al3+. The data were plotted according to the Langmuir, Freundlich, Elovich, Temkin and Halsey isotherms. The Langmuir isotherm maximum adsorption capacity (qmax) is 286 mg U g-1 and higher than for other reported sorbents. Moreover, Cs-corrected STEM visualizes the uranium on the NP surface, which is consistent with the Halsey isotherm model for multilayer adsorption. The U(VI) adsorbed on SßCD-APTES@Fe2O3 is easily recovered by magnetic sedimentation and desorption performed in a small volume in order to concentrate the extract. The nanocomposite can be regenerated and re-used at least tenfold

    Influencia de la disponibilidad de oxigeno en el mecanismo de formación de la película pasiva de armaduras de acero en medio alcalino.

    Get PDF
    El carácter El carácter fuertemente fuertemente alcalino alcalino dede lala solución solución acuosa acuosa dede los los poros poros dede hormigón hormigón vava aa provocar provocar lala generación generación dede una capa una capa pasivante pasivante constituida constituida por por óxidos óxidos dede hierro hierro sobre sobre lala superficie superficie dede lala armadura armadura enen contacto contacto con con elel hormigón. hormigón. Esta Esta capa capa dede óxidos óxidos eses termodinámicamente termodinámicamente yy cinéticamente cinéticamente variable variable yy evoluciona evoluciona con con elel tiempo, tiempo, término conocido término conocido comúnmente comúnmente como como “envejecimiento” “envejecimiento”.. La estructura La estructura yy composición composición dede esta esta capa capa pasiva pasiva pueden pueden variar variar enen función función dede parámetros parámetro como el como el pHpH del del medio, medio, elel contenido contenido enen OO , composición , composición dede lala fase fase acuosa, acuosa, lala temperatura, temperatura, etc. etc. yy sufrir sufrir modificaciones modificaciones con con elel tiempo tiempo como como consecuencia consecuencia dede estos estos parámetr

    Maghemite nanoparticles bearing di(amidoxime) groups for the extraction of uranium from wastewaters

    Get PDF
    Polyamidoximes (pAMD) are known to have strong affinities for uranyl cations. Grafting pAMD onto the surface of functionalized maghemite nanoparticles (MNP) leads to a nanomaterial with high capacities in the extraction of uranium from wastewaters by magnetic sedimentation. A diamidoxime (dAMD) specifically synthesized for this purpose showed a strong affinity for uranyl: Ka = 105 M-1 as determined by Isothermal Titration Calorimetry (nano-ITC). The dAMD was grafted onto the surface of MNP and the obtained sorbent (MNP-dAMD) was characterized. The nanohybrids were afterward incubated with different concentrations of uranyl and the solid phase recovered by magnetic separation. This latter was characterized by zeta-potential measurements, X-Ray Photoelectron Spectroscopy (XPS) and X-Ray Fluorescence spectroscopy (XRF), whereas the supernatant was analyzed by Inductively Coupled Plasma coupled to Mass Spectrometry (ICP-MS). All the data fitted the models of Langmuir, Freundlich and Temkin isotherms very well. These isotherms allowed us to evaluate the efficiency of the adsorption of uranium by MNP-dAMD. The saturation sorption capacity (qmax) was determined. It indicates that MNP-dAMD is able to extract up to 120 mg of uranium per gram of sorbent. Spherical aberration (Cs)-corrected High-Resolution Scanning Transmission Electron Microscopy (HRSTEM) confirmed these results and clearly showed that uranium is confined at the surface of the sorbent. Thus, MNP-dAMD presents a strong potential for the extraction of uranium from wastewaters

    Evidence of cathodic peroxydisulfate activation via electrochemical reduction at Fe(II) sites of magnetite-decorated porous carbon: Application to dye degradation in water

    Get PDF
    Peroxydisulfate (PDS, S2O82−)-based advanced oxidation processes have been developed as an alternative to those based on *OH, as PDS activation yields a much more stable radical like SO4* − that can maintain the oxidation ability of water treatment systems for longer time. Here, the electrochemical PDS activation has been investigated using reticulated vitreous carbon (RVC) substrate modified with Fe3O4 nanoparticles (NPs) as cathode. The NPs were exhaustively characterized by different surface analysis techniques (TEM, SEM) and Mössbauer spectroscopy. Cyclic voltammetry and linear sweep voltammetry with a rotating disk electrode allowed concluding that the main electrocatalytic role in the cathodic PDS activation to SO4 *− corresponded to the Fe(II) active sites continuously promoted upon cathodic polarization. These sites were less catalytic for O2 reduction reaction, although it was still feasible with n = 2.7 electrons as determined from Koutecky-Levich analysis. Both cathodic reactions followed an inner-sphere reaction mechanism. The Fe3O4- modified RVC cathodes were employed to electrolyze Methylene Blue aqueous solutions at pH 3.5, employing different current values and PDS concentrations. Dissolved O2 was purged to impede the competitive cathodic H2O2 production and Fenton's reaction. The occurrence of dye adsorption/electrosorption on the cathode reduced the mass transport limitations, enhancing the reaction between SO4 *− and organic molecules. The best operation conditions to reach total and fast color removal at 18 min were 2 mM PDS and 10 mA, yielding > 80% TOC abatement at 45 min. Reproducible degradation profiles were found after 5 runs, thereby ensuring the stability of the Fe3O4-modified RVC, with no iron sludge production

    The role of the temperature in the morphology and properties of zinc oxide structures obtained by electrosynthesis in aqueous solution

    No full text
    Herein, ZnO micro and nanostructures were synthesized by an electrochemical method in aqueous solution employing NaCl as the electrolyte. Different parameters influencing the synthesis process, i.e. current intensity, reaction time and temperature, were investigated. From this, it was concluded that the productivity of the reaction increases with longer reaction time, whereas the use of higher current intensity augments the specific energy consumption. On the other hand, the increase in temperature seems to exert a negative effect. The characterization of the resulting materials by scanning electron microscopy, X-ray diffraction and thermogravimetric analysis demonstrated that a mixture of Zn(OH)(2) and ZnO crystalline structures is formed directly from the synthesis procedure. The content of Zn(OH)(2) phase in the sample decreases as the temperature of the synthesis increases, this fact indicates that the low productivity obtained at higher temperatures is related to the nature of the resulting material. Thermal annealing of the samples containing both phases prepared following synthesis allows the phase transformation from Zn(OH)(2) to pure ZnO structures. The band gap energies of the ZnO materials were determined by diffuse reflectance measurements according to the Kubelka Munk theory, revealing low values in all the cases which were highly dependent on the size of crystals within the materials. The photocatalytic properties of the pure ZnO samples post calcination were investigated by the decomposition of an organic dye under UV light irradiation. The results show the beneficial photocatalytic properties of the samples that had undergone calcination, these were superior in comparison to those prepared at room temperature which mainly consisted of Zn(OH)(2). (C) 2016 Elsevier B.V. All rights reserved

    NCX-701 (nitroparacetamol) is an effective antinociceptive agent in rat withdrawal reflexes and wind-up

    No full text
    1. Non-steroidal anti-inflammatory drugs (NSAIDs) are effective anti-inflammatory and analgesic drugs although they also induce unwanted side effects due to the inhibition of the physiological effects regulated by prostaglandins. This has led to the search for new compounds with fewer side effects, such as the nitro-NSAIDs (NO-NSAIDs). Paracetamol is an analgesic drug devoid of some of the side effect of the NSAIDs but without anti-inflammatory activity. NCX-701 is a nitric oxide releasing version of paracetamol with anti-inflammatory and analgesic properties. 2. We have tested, in the single motor unit technique, the antinociceptive actions of intravenous cumulative doses of NCX-701 vs paracetamol, studying their antinociceptive effects in responses to noxious mechanical and electrical stimulation (wind-up). 3. Paracetamol did not induce any significant effect at the doses tested (maximum of 480 μmol kg(−1), 72.5 mg kg(−1)). NCX-701 however was very effective in reducing responses to noxious mechanical stimulation (32±10% of control response) and wind-up (ED(50) of 147±1 μmol kg(−1), 41.5±0.3 mg kg(−1)). The inhibition was not reversed by 1 mg kg(−1) of the opioid antagonist naloxone. In control experiments performed with either the vehicle or the NO donor NOC-18, no significant changes were observed in the nociceptive responses studied. 4. We conclude that NCX-701 is a very effective non-opioid antinociceptive agent in normal animals and its action is located mainly at central areas. The antinociceptive effect was not due solely to the release of NO
    corecore