741 research outputs found

    Primary hyperparathyroidism

    Get PDF
    Primary hyperparathyroidism (PHPT) is a common disorder in which parathyroid hormone (PTH) is excessively secreted from one or more of the four parathyroid glands. A single benign parathyroid adenoma is the cause in most people. However, multiglandular disease is not rare and is typically seen in familial PHPT syndromes. The genetics of PHPT is usually monoclonal when a single gland is involved and polyclonal when multiglandular disease is present. The genes that have been implicated in PHPT include proto-oncogenes and tumour-suppressor genes. Hypercalcaemia is the biochemical hallmark of PHPT. Usually, the concentration of PTH is frankly increased but can remain within the normal range, which is abnormal in the setting of hypercalcaemia. Normocalcaemic PHPT, a variant in which the serum calcium level is persistently normal but PTH levels are increased in the absence of an obvious inciting stimulus, is now recognized. The clinical presentation of PHPT varies from asymptomatic disease (seen in countries where biochemical screening is routine) to classic symptomatic disease in which renal and/or skeletal complications are observed. Management guidelines have recently been revised to help the clinician to decide on the merits of a parathyroidectomy or a non-surgical course. This Primer covers these areas with particular attention to the epidemiology, clinical presentations, genetics, evaluation and guidelines for the management of PHPT

    Different somatic alterations of the HRPT2 gene in a patient with recurrent sporadic primary hyperparathyroidism carrying an HRPT2 germline mutation

    Get PDF
    Early onset of primary hyperparathyroidism (PHPT) and multiglandular involvement suggest a familial form in which germline mutation of a PHPT-related gene(s) and a somatic event at the same locus can be often demonstrated. We investigated the involvement of multiple endocrine neoplasia type 1 (MEN1) and HRPT2 genes in a 39-year-old man with recurrent PHPT. PHPT was firstly diagnosed at the age of 21 and the patient had two recurrences separated by extended periods of normocalcemia. This unusual history prompted us to investigate other family members and study the MEN1 and HRPT2 genes. An HRPT2 germline missense mutation in exon 3 (R91P) was found in the index case, which was associated with different HRPT2 somatic alterations in each of the three examined parathyroid tumors. These findings are consistent with Knudson's 'two hit' concept of biallelic inactivation of classical tumor suppressor genes. Screening of 15 asymptomatic relatives was negative for the R91P germline mutation. All the three abnormal parathyroid specimens showed cystic features at histology and were negative for parafibromin immunostaining. In one specimen, diffuse parafibromin staining was evident in a rim of normal parathyroid tissue surrounding the adenomatous lesion. Our study shows that different somatic genetic events at the HRPT2 locus are responsible for the asynchronous occurrence of multiple adenomas in a patient carrying an HRPT2 germline mutation. The finding of diffuse parafibromin staining in a rim of normal parathyroid tissue, but not in the contiguous adenomatous lesion, reinforces the concept that loss of parafibromin expression is responsible for the development of parathyroid tumors in this setting

    Experimental data based machine learning classification models with predictive ability to select in vitro active antiviral and non-toxic essential oils

    Get PDF
    In the last decade essential oils have attracted scientists with a constant increase rate of more than 7% as witnessed by almost 5000 articles. Among the prominent studies essential oils are investigated as antibacterial agents alone or in combination with known drugs. Minor studies involved essential oil inspection as potential anticancer and antiviral natural remedies. In line with the authors previous reports the investigation of an in-house library of extracted essential oils as a potential blocker of HSV-1 infection is reported herein. A subset of essential oils was experimentally tested in an in vitro model of HSV-1 infection and the determined IC50s and CC50s values were used in conjunction with the results obtained by gas-chromatography/mass spectrometry chemical analysis to derive machine learning based classification models trained with the partial least square discriminant analysis algorithm. The internally validated models were thus applied on untested essential oils to assess their effective predictive ability in selecting both active and low toxic samples. Five essential oils were selected among a list of 52 and readily assayed for IC50 and CC50 determination. Interestingly, four out of the five selected samples, compared with the potencies of the training set, returned to be highly active and endowed with low toxicity. In particular, sample CJM1 from Calaminta nepeta was the most potent tested essential oil with the highest selectivity index (IC50 = 0.063 mg/mL, SI > 47.5). In conclusion, it was herein demonstrated how multidisciplinary applications involving machine learning could represent a valuable tool in predicting the bioactivity of complex mixtures and in the near future to enable the design of blended essential oil possibly endowed with higher potency and lower toxicity

    Vasa vasorum lumen narrowing in brain vascular hyalinosis in systemic hypertension patients who died of ischemic stroke

    Get PDF
    Ischemic stroke is a major cause of death among patients with systemic hypertension. The narrowing of the lumen of the brain vasculature contributes to the increased incidence of stroke. While hyalinosis represents the major pathological lesions contributing to vascular lumen narrowing and stroke, the pathogenic mechanism of brain vascular hyalinosis has not been well characterized. Thus, the present study examined the postmortem brain vasculature of human patients who died of ischemic stroke due to systemic hypertension. Hematoxylin and eosin staining and immunohistochemistry showed the occurrence of brain vascular hyalinosis with infiltrated plasma proteins along with the narrowing of the vasa vasorum and oxidative stress. Transmission electron microscopy revealed endothelial cell bulge protrusion into the vasa vasorum lumen and the occurrence of endocytosis in the vasa vasorum endothelium. The treatment of cultured microvascular endothelial cells with adrenaline also promoted the formation of the bulge as well as endocytic vesicles. The siRNA knockdown of sortin nexin-9 (a mediator of clathrin-mediated endocytosis) inhibited adrenaline-induced endothelial cell bulge formation. Adrenaline promoted protein-protein interactions between sortin nexin-9 and neural Wiskott–Aldrich syndrome protein (a regulator of actin polymerization). Spontaneously hypertensive stroke-prone rats also exhibited lesions indicative of brain vascular hyalinosis, the endothelial cell protrusion into the lumen of the vasa vasorum, and endocytosis in vasa vasorum endothelial cells. We propose that endocytosis-dependent endothelial cell bulge protrusion narrows the vasa vasorum, resulting in ischemic oxidative damage to cerebral vessels, the formation of hyalinosis, the occurrence of ischemic stroke, and death in systemic hypertension patients

    MC1568 inhibits HDAC6/8 activity and influenza A virus replication in lung epithelial cells: Role of Hsp90 acetylation

    Get PDF
    Aim: Histone deacetylases (HDACs) regulate the life cycle of several viruses. We investigated the ability of different HDAC inhibitors, to interfere with influenza virus A/Puerto Rico/8/34/H1N1 (PR8 virus) replication in Madin-Darby canine kidney and NCI cells. Results: 3-(5-(3-Fluorophenyl)-3-oxoprop-1-en-1-yl)-1-methyl-1H-pyrrol-2-yl)-N-hydroxyacrylamide (MC1568) inhibited HDAC6/8 activity and PR8 virus replication, with decreased expression of viral proteins and their mRNAs. Such an effect may be related to a decrease in intranuclear content of viral polymerases and, in turn, to an early acetylation of Hsp90, a major player in their nuclear import. Later, the virus itself induced Hsp90 acetylation, suggesting a differential and time-dependent role of acetylated proteins in virus replication. Conclusion: The inhibition of HDAC6/8 activity during early steps of PR8 virus replication could lead to novel anti-influenza strategy

    Enalapril reduces proliferation and hyaluronic acid release in orbital fibroblasts

    Get PDF
    BACKGROUND: Orbital fibroblast proliferation and hyaluronic acid (HA) release are responsible for some of the clinical features of Graves' ophthalmopathy (GO). Thus, inhibition of these processes may be a possible therapeutic approach to this syndrome. Enalapril, a widely used antihypertensive drug, was found to have some inhibitory actions on fibroblast proliferation in cheloid scars in vivo, based on which we investigated its effects in primary cultures of orbital fibroblasts from GO patients and control subjects. METHODS: Primary cultures of GO and control fibroblasts were treated with enalapril or with a control compound (lisinopril). Cell proliferation assays, lactate dehydrogenase release assays (as a measure of cell necrosis), apoptosis assays, and measurement of HA in the cell media were performed. RESULTS: Enalapril significantly reduced cell proliferation in both GO and control fibroblasts. Because enalapril did not affect cell necrosis and apoptosis, we concluded that its effects on proliferation reflected an inhibition of cell growth and/or a delay in cell cycle. Enalapril significantly reduced HA concentrations in the media from both GO and control fibroblasts. CONCLUSIONS: Enalapril has antiproliferative and HA suppressing actions in both GO and control fibroblasts. Clinical studies are needed to investigate whether enalapril has any effects in vivo in patients with GO

    Role of HSV-1 in Alzheimer's disease pathogenesis: A challenge for novel preventive/therapeutic strategies

    Get PDF
    Herpes simplex virus-1 (HSV-1) is a ubiquitous DNA virus able to establish a life-long latent infection in host sensory ganglia. Following periodic reactivations, the neovirions usually target the site of primary infection causing recurrent diseases in susceptible individuals. However, reactivated HSV-1 may also reach the brain resulting in severe herpetic encephalitis or in asymptomatic infections. These have been reportedly linked to neurodegenerative disorders, such as Alzheimer's disease (AD), suggesting antiviral preventive or/therapeutic treatments as possible strategies to counteract AD onset and progression. Here, we provide an overview of the AD-like mechanisms driven by HSV-1-infection in neurons and discuss the ongoing trials repurposing anti-herpetic drugs to treat AD as well as preventive strategies aimed at blocking virus infection
    corecore