436 research outputs found

    Field genebank standards for grapevines (Vitis vinifera L.)

    Get PDF

    Response to comments on "magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain"

    Get PDF
    We reported on a neural progenitor cell biomarker, a lipid-based metabolite enriched in these cells, which we detected using spectroscopy both in vitro and in vivo, and singular value decomposition–based signal processing. The study provided an outline of our computational methodology. Herein, we report more extensively on the method of spectrum analysis used, demonstrating the specificity of our findings

    Groundwater mixing in a heterogeneous multilayer aquifer driven by geogenic CO2 fluxes: Evidence from chemical and isotopic composition of Ferrarelle waters (Riardo Plain, southern Italy)

    Get PDF
    The successful management of carbon in the Earth's crust is critical for mitigating the increase of anthropogenic CO2 in the atmosphere. Carbon Capture and Storage (CCS) requires an understanding of the behavior of carbon in the crust and the development of robust monitoring techniques to constrain the movement, mechanisms, and pathways for any potential CO2 leakage. Here, we examine an aquifer from the Riardo Plain (Campania Region, southern Italy), which serves as a suitable natural analogue for CO2 migration to the critical zone (i.e., shallow crust and aquifers) and as a case study to evaluate the geochemical processes that occur when CO2-saturated fluids mix with freshwater in shallow aquifers. We investigate the behavior of various geochemical constituents (major and trace elements, δ18O–H2O, δ13C-DIC, and Rn content). Water from this area has a high degree of mineralization (EC 2500–3000 μS/cm), high HCO3- (~2.5 g/L), is saturated with respect to CaCO3, and is enriched in alkali ions (e.g., Na+ + K+). The high degree of mineralization occurs in groundwater that discharges from the basal aquifer of the Roccamonfina volcanic edifice (~6 km NW), with vast CO2 inputs that promote host rock leaching. Superficial volcanic aquifers are recharged by fresh meteoric precipitation when groundwater flows from carbonates at the edge of the plain to aquifers hosted in the southeastern slope of the Roccamonfina volcano. The presence of normal faults in this area permits natural upwelling of CO2-rich groundwater, which locally mixes with shallow freshwater present within the upper volcanic succession. Significant (R > 0.8) linear correlations between conservative elements suggest that groundwater geochemistry is dominated by a mixture of two main endmembers: (i) deep/mineralized waters and (ii) shallow/diluted waters. The intrusion of freshwater to volcanic aquifers induces oxidation, leading to adsorption of select elements (e.g., As and Ba) onto Fe-oxyhydroxide precipitates within these aquifers. Geochemical modeling suggests that CO2 saturation approaches 3 g/L, which agrees with direct measurements of CO2 flux. We conclude that our conceptual geochemical model helps to constrain mixing of CO2 with freshwater and to diagnose the secondary geochemical processes that influence aqueous geochemistry within CO2-influenced groundwater

    The Campo de Calatrava Volcanic Field (central Spain): Fluid geochemistry in a CO2-rich area.

    Get PDF
    The Campo de Calatrava Volcanic Field (CCVF) located in central-southern Spain (along with Selva-Emporda in Catalonia, NE Spain) is regarded as one of the most important CO emitting zones in Peninsular Spain. Here, we report and evaluate new molecular and isotopic geochemistry of thermal waters and COrich gas discharges from the CCVF. Locally, these CO-rich fluid emissions represent the remnants of the past volcanic activity that affected this area from the late Miocene through the Quaternary, with the most recent events occurring in the Holocene. The locations of discharging fluids and previous volcanic centers appear to be aligned along well-defined NW-SE and NNW-SSE lineaments, with subordinate trends in the ENE-WSW direction. The chemical and isotopic composition of the thermal waters suggests a meteoric origin, dominated by three distinct geochemical facies: 1) HCO-Mg(Ca) type waters, associated with a relatively shallow aquifer and related to the interaction of meteoric waters with CO-rich gases, alkaline volcanic products, and sedimentary formations, 2) SO(Cl)-Ca(Mg) type waters, which stems from the two rivers (Guadiana and Jabalón) that drain Triassic evaporitic rocks before entering the study area, and 3) HCO-Na type waters, hosted in deep geopressurized CO-rich reservoirs within the Ordovician basement rocks. The Sr/Sr isotopic compositions (ranging between 0.70415 and 0.71623) and δS-SO values (+10.7 to +18.3‰ vs. CDT) of CO-rich fluids are consistent with interactions between water and either the Paleozoic basement, Triassic evaporites, Quaternary volcanic rocks, or a combination thereof. Dissolution of a CO-rich gas phase into the aquifer produces low pH values (down to 5.4) and enhances water-rock interactions causing relatively high salinity (Total Ionic Salinity: up to ∼185 meq/L). Carbon dioxide is by far the most abundant gas constituent (up to 992 mmol/mol) and is dominated by mantle-derived sources as indicated by the combination of relatively high helium isotopic ratios (up to 2.7 R/Ra), high isotopic ratios of carbon in CO (ranging between −6.8 and −3.2‰ V-PDB), and the carbon isotopic signature of TDIC (from −6.8 to +2.2‰ vs. VPDB). In the last two decades, numerous (CO-rich) gas blowouts have occurred in the area during well drillings, suggesting the presence of a geopressurized gas reservoir at relatively shallow depth.The Municipality of Almagro is gratefully acknowledged for the help provided during the sampling activities. We would like to thank Dr. Luis Perez del Villar for his help during the first sampling fieldwork at CCVF. We wish to thank D. Melero Cabañas who accompanied us in the field to collect the water samples during the first survey. Many thanks are also due to the personnel of Amphos21 (J. Bruno, A. Cedez, F. Grandia) and Ciudad de la Energia (D. Angel) and F. Capecchiacci (Dept. Earth Science of Florence) for their help during the second survey. We would like to acknowledge the comments and suggestions provided by two reviewers, who greatly improved an early version of the manuscript. This work was partially funded by Ciudad de la Energia (Resp. OV; Grant contract: ALM-08-006) and the Laboratory of Stable Isotopes and Fluid Geochemistry of the Department of Earth Sciences (University of Florence)

    Neural Potential of a Stem Cell Population in the Hair Follicle

    Get PDF
    The bulge region of the hair follicle serves as a repository for epithelial stem cells that can regenerate the follicle in each hair growth cycle and contribute to epidermis regeneration upon injury. Here we describe a population of multipotential stem cells in the hair follicle bulge region; these cells can be identified by fluorescence in transgenic nestin-GFP mice. The morphological features of these cells suggest that they maintain close associations with each other and with the surrounding niche. Upon explantation, these cells can give rise to neurosphere-like structures in vitro. When these cells are permitted to differentiate, they produce several cell types, including cells with neuronal, astrocytic, oligodendrocytic, smooth muscle, adipocytic, and other phenotypes. Furthermore, upon implantation into the developing nervous system of chick, these cells generate neuronal cells in vivo. We used transcriptional profiling to assess the relationship between these cells and embryonic and postnatal neural stem cells and to compare them with other stem cell populations of the bulge. Our results show that nestin-expressing cells in the bulge region of the hair follicle have stem cell-like properties, are multipotent, and can effectively generate cells of neural lineage in vitro and in vivo

    Type of mRNA COVID-19 vaccine and immunomodulatory treatment influence humoral immunogenicity in patients with inflammatory rheumatic diseases

    Full text link
    Patients with inflammatory rheumatic diseases (IRD) are at increased risk for worse COVID-19 outcomes. Identifying whether mRNA vaccines differ in immunogenicity and examining the effects of immunomodulatory treatments may support COVID-19 vaccination strategies. We aimed to conduct a long-term, model-based comparison of the humoral immunogenicity following BNT162b2 and mRNA-1273 vaccination in a cohort of IRD patients. Patients from the Swiss IRD cohort (SCQM), who assented to mRNA COVID-19 vaccination were recruited between 3/2021-9/2021. Blood samples at baseline, 4, 12, and 24 weeks post second vaccine dose were tested for anti-SARS-CoV-2 spike IgG (anti-S1). We examined differences in antibody levels depending on the vaccine and treatment at baseline while adjusting for age, disease, and past SARS-CoV-2 infection. 565 IRD patients provided eligible samples. Among monotherapies, rituximab, abatacept, JAKi, and TNFi had the highest odds of reduced anti-S1 responses compared to no medication. Patients on specific combination therapies showed significantly lower antibody responses than those on monotherapy. Irrespective of the disease, treatment, and past SARS-CoV-2 infection, the odds of higher antibody levels at 4, 12, and 24 weeks post second vaccine dose were, respectively, 3.4, 3.8, and 3.8 times higher with mRNA-1273 versus BNT162b2 (p < 0.0001). With every year of age, the odds ratio of higher peak humoral immunogenicity following mRNA-1273 versus BNT162b2 increased by 5% (p < 0.001), indicating a particular benefit for elderly patients. Our results suggest that in IRD patients, two-dose vaccination with mRNA-1273 versus BNT162b2 results in higher anti-S1 levels, even more so in elderly patients

    Type of mRNA COVID-19 vaccine and immunomodulatory treatment influence humoral immunogenicity in patients with inflammatory rheumatic diseases.

    Get PDF
    Patients with inflammatory rheumatic diseases (IRD) are at increased risk for worse COVID-19 outcomes. Identifying whether mRNA vaccines differ in immunogenicity and examining the effects of immunomodulatory treatments may support COVID-19 vaccination strategies. We aimed to conduct a long-term, model-based comparison of the humoral immunogenicity following BNT162b2 and mRNA-1273 vaccination in a cohort of IRD patients. Patients from the Swiss IRD cohort (SCQM), who assented to mRNA COVID-19 vaccination were recruited between 3/2021-9/2021. Blood samples at baseline, 4, 12, and 24 weeks post second vaccine dose were tested for anti-SARS-CoV-2 spike IgG (anti-S1). We examined differences in antibody levels depending on the vaccine and treatment at baseline while adjusting for age, disease, and past SARS-CoV-2 infection. 565 IRD patients provided eligible samples. Among monotherapies, rituximab, abatacept, JAKi, and TNFi had the highest odds of reduced anti-S1 responses compared to no medication. Patients on specific combination therapies showed significantly lower antibody responses than those on monotherapy. Irrespective of the disease, treatment, and past SARS-CoV-2 infection, the odds of higher antibody levels at 4, 12, and 24 weeks post second vaccine dose were, respectively, 3.4, 3.8, and 3.8 times higher with mRNA-1273 versus BNT162b2 (p < 0.0001). With every year of age, the odds ratio of higher peak humoral immunogenicity following mRNA-1273 versus BNT162b2 increased by 5% (p < 0.001), indicating a particular benefit for elderly patients. Our results suggest that in IRD patients, two-dose vaccination with mRNA-1273 versus BNT162b2 results in higher anti-S1 levels, even more so in elderly patients

    Molecular characterization of old local grapevine varieties from South East European countries

    Get PDF
    South East European (SEE) viticulture partially relies on native grapevine varieties, previously scarcely described. In order to characterize old local grapevine varieties and assess the level of synonymy and genetic diversity from SEE countries, we described and genotyped 122 accessions from Albania, Federation of Bosnia and Herzegovina (B&amp;H), Croatia, Macedonia, Moldova, Montenegro, Republika Srpska (Bosnia and Herzegovina) and Romania on nine most commonly used microsatellite loci. As a result of the study a total of 86 different genotypes were identified. All loci were very polymorphic and a total of 96 alleles were detected, ranging from 8 to 14 alleles per locus, with an average allele number of 10.67. Overall observed heterozygosity was 0.759 and slightly lower than expected (0.789) while gene diversity per locus varied between 0.600 (VVMD27) and 0.906 (VVMD28). Eleven cases of synonymy and three of homonymy have been recorded for samples harvested from different countries. Cultivars with identical genotypes were mostly detected between neighboring countries. No clear differentiation between countries was detected although several specific alleles were detected. The integration of the obtained genetic data with ampelographic ones is very important for accurate identification of the SEE cultivars and provides a significant tool in cultivar preservation and utilization.

    Comparing estimates of influenza-associated hospitalization and death among adults with congestive heart failure based on how influenza season is defined

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is little consensus about how the influenza season should be defined in studies that assess influenza-attributable risk. The objective of this study was to compare estimates of influenza-associated risk in a defined clinical population using four different methods of defining the influenza season.</p> <p>Methods</p> <p>Using the Studies of Left Ventricular Dysfunction (SOLVD) clinical database and national influenza surveillance data from 1986–87 to 1990–91, four definitions were used to assess influenza-associated risk: (a) three-week moving average of positive influenza isolates is at least 5%, (b) three-week moving average of positive influenza isolates is at least 10%, (c) first and last positive influenza isolate are identified, and (d) 5% of total number of positive isolates for the season are obtained. The clinical data were from adults aged 21 to 80 with physician-diagnosed congestive heart failure. All-cause hospitalization and all-cause mortality during the influenza seasons and non-influenza seasons were compared using four definitions of the influenza season. Incidence analyses and Cox regression were used to assess the effect of exposure to influenza season on all-cause hospitalization and death using all four definitions.</p> <p>Results</p> <p>There was a higher risk of hospitalization associated with the influenza season, regardless of how the start and stop of the influenza season was defined. The adjusted risk of hospitalization was 8 to 10 percent higher during the influenza season compared to the non-influenza season when the different definitions were used. However, exposure to influenza was not consistently associated with higher risk of death when all definitions were used. When the 5% moving average and first/last positive isolate definitions were used, exposure to influenza was associated with a higher risk of death compared to non-exposure in this clinical population (adjusted hazard ratios [HR], 1.16; 95% confidence interval [CI], 1.04 to 1.29 and adjusted HR, 1.19; 95% CI, 1.06 to 1.33, respectively).</p> <p>Conclusion</p> <p>Estimates of influenza-attributable risk may vary depending on how influenza season is defined and the outcome being assessed.</p
    • …
    corecore