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Response to Comments on “Magnetic
Resonance Spectroscopy ldentifies
Neural Progenitor Cells in the

Live Human Brain”

Petar M. Djuri¢,™* Helene Benveniste,"? Mark E. Wagshul,® Fritz Henn,?

Grigori Enikolopov,® Mirjana Maleti¢-Savati¢

1,3%

We reported on a neural progenitor cell biomarker, a lipid-based metabolite enriched in

these cells, which we detected using spectroscopy both in vitro and in vivo, and singular value
decomposition—based signal processing. The study provided an outline of our computational
methodology. Herein, we report more extensively on the method of spectrum analysis used,

demonstrating the specificity of our findings.

anganas et al. (1) described a metabolic
Mbiomarker for the detection and quan-

tification of neural progenitor cells
(NPCs) in the human brain in vivo. Most of the
concerns of Hoch et al. (2), Friedman (3), and
Jansen et al. (4) relate to the reported spectral
processing methods and their validity. The meth-
odology used to detect NPCs in (/) is based on
singular value decomposition (SVD) and relies
on the assumption that the metabolite signals are
modeled as decaying complex sinusoids. As such,
the method belongs to the category of parametric
methods. In general, provided that the model of
the data is correct, parametric methods can often
achieve much better performance than nonpara-
metric ones (5). For instance, excellent quantita-
tion results have been recently reported for an
algorithm that is based on decaying complex
sinusoids (6). Various versions of SVD-based
methods have been reported, and their accuracy
demonstrated (7, 8). For example, it has been
shown that, for sufficiently high signal-to-noise
ratios (SNRs), the SVD-based methods achieve
the Cramér-Rao bound, which provides the smallest
variance of an estimate that can be obtained by an
unbiased estimator (7, 9). However, if the ac-
quired data do not follow the assumed signal and
noise models or if the SNRs are below a certain
level, the performance of the method degrades
and reliable estimates become impossible. The
robustness of the SVD method is a complex
problem, and the fact that the method is iterative
makes the evaluation of its robustness even more
challenging. Thus, in a series of test experiments,
we extensively analyzed the validity of our meth-
od and quantified the false discovery rates.
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To test the detection/estimation performance
of our method as a function of SNR, we performed
experiments on both fully synthesized and semi-
synthesized data. The SNR was defined by
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where a and d are the initial amplitude and damp-
ing factor of the decaying sinusoid, respectively,
o” is the noise variance, and N is the number of
samples. When the damping factor d is zero, the
SNR s equal to the first term of the above equa-
tion. As a metric for accuracy in estimation per-
formance, we used the relative root mean square
estimation error (RRMSE), defined by

A [1 & (0-6)°

where K is the number of Monte Carlo trials, 6 is
the true value of the unknown parameter, and 0 k
is the estimate of 6 in the A-th trial.

The testing with fully synthesized data was
done as reported by Stern et al. (10). Figure 1 shows
the results of detection/estimation of two close
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components, where component 1 had frequency
0.15 and damping factor 0.01, and component 2
had frequency 0.2 and damping factor 0.005 (the
sampling frequency was normalized to 1; note
that the frequencies are not expressed in ppm).
The number of samples in each data set was
1024. We tested the detection/estimation perform-
ance of the method as a function of SNR by
setting the amplitude of component 1 to be 100
times stronger than that of component 2. With
this choice of parameters, the power spectral
density of component 1 at frequency 0.2 was
about 2.5 times as large as the power spectral
density of component 2. We simulated circular
complex white Gaussian noise and varied the
SNR in the range from —25 dB to 5 dB, where
important changes in performance are expected
(the SNR was defined with respect to component
2). For each SNR, we simulated 200 indepen-
dent realizations. As shown in Fig. 1A, for
SNRs > —14 dB, the weaker signal is always de-
tected (100% detection). Figure 1B demonstrates
how the RRMSE decreases with the increase of
SNR. For example, the graph shows that the
RRMSE of the estimated amplitude of the second
signal is almost 20% at —14 dB.

It is well known that when the noise is suf-
ficiently strong, the applied model may incorrect-
ly register a noise component in the proximity of
the signal component and falsely consider it as a
true signal, leading to a false positive detection.
We tested the rate of false positive events on
simulated data where we removed the component
2 at frequency 0.2 and searched for a signal com-
ponent in the bandwidth 0.195 to 0.205. Com-
ponent 1 was still present in the data. It was
assumed that the number of signal components
was M = 15. In 2000 trials, a signal was detected
306 times, which implies that the estimated false
positive rate was about 0.15, a rather high rate of
false discovery. However, the histogram of de-
tected false positives as a function of SNR (Fig.
2) demonstrates that the maximum SNR of a
false positive signal was around —18 dB and that
most of the false positive signals had SNRs <20 dB.
Therefore, when we detect a signal that yields an
SNR < -20 dB, we can dismiss it and consider it
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Fig. 1. Detection/estimation performance of the SVD-based method on fully synthesized data. (A)
Probability of detection as a function of SNR. (B) RRMSE of the estimated amplitude of the weaker signal

as a function of SNR.
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as a false positive, with the probability of making
a mistake of at least about 0.2. In addition, for an
SNR of —20 dB, the RRMSE of the estimated
amplitude is about 40% or higher. Therefore, the
results show that with a combined detection-
estimation strategy, one can get reliable results in
the range of SNR that is of interest.

The testing on semisynthesized data consisted
of injecting a computer-generated signal into the
acquired human "H-MRS data, thereby mimicking
the presence of a metabolite. This allowed us to
work with realistic data (i.e., actual amplitudes
for common metabolites and actual noise char-
acteristics) but under conditions where we had
the ground truth for the fictitious metabolite. The
injected signal of the fictitious metabolite had one
of five different amplitudes with relative values,
as compared to the creatine level, of 0.01, 0.05,
0.1, 0.5, and 1. In all experiments, the damping
factor equaled 0.0045. To determine the absolute
amplitude of the fictitious signal, we estimated
the absolute amplitude of creatine. The frequency
of the fictitious signal was not always the same,
but was known. The obtained results from 22 sets
of data analyzed with Monte Carlo simulations
demonstrate that we could rely on our method
(Table 1) for all creatine/fictitious metabolite ra-
tios except 0.01, for which SVD-based estimates
were unreliable. Furthermore, the fitted spectra
and the shape of the fitted signals were verified
for plausibility using independent approaches [as
suggested in (/7)]. The presence of the 1.28-ppm
biomarker was checked not only with a single
number of assumed signal components but also
with a set of different components M. We took
special care that the operator was always un-
biased and had no knowledge of the source of the
data and that we always analyzed control data in
parallel. In summary, we have developed and
extensively tested our SVD-based algorithm on
fully synthesized and semisynthesized data. We
have defined the boundaries of our algorithm in
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Fig. 2. Histogram of false positives as a function
of SNR.

order to prevent detection of false positive sig-
nals. Our results give us strong confidence in our
original claims (7).

Hoch et al. (2) and Jansen et al. (4) raise
concerns about the cell preparations used to ob-
tain our "H-NMR spectra. Our data represent the
'H-NMR spectra of whole-cell suspensions, as
described for various settings (72, 13), and not
the high-resolution magic angle spinning (HRMAS)
spectra of cell extracts used in (/4). It has been
suggested that HRMAS of cell extracts provides
highly resolved spectra (15). However, it has also
been recognized that the extraction procedures,
as well as different solubilities of metabolites,
may not accurately represent the in vivo neuro-
chemical profiles of cells analyzed (16, /7). For
instance, perchloric acid extraction may lead to
damage of tissue lipids and profound distortions
in the representation of lipids in the cell extracts
(18-21). Overall, HRMAS of cell extracts is
clearly different from the spectra of whole cells
(22). One of the major differences reported is the
presence of lipid resonances in the whole-cell
spectra but not in the spectra of extracts (22).
Therefore, the whole-cell spectra and cell extract
HRMAS are not readily comparable. Frequently,
the whole-cell "H-NMR gives spectral broaden-
ing, as pointed out by Friedman (3), and this may
interfere with quantification when peak area is
used. Therefore, we employed the SVD-based
processing, taking into account not the area of the
peak but the amplitude of the peak at a given
frequency (1.28 ppm) in the time domain. To
accurately determine the position of all metabo-
lites observed in all spectra, we calibrated them in
vitro with tetramethylsilane (TMS), which oscil-
lates at 0.00 ppm (7). Therefore, the calibration in
vitro did not depend on the NAA or any other
metabolite that could shift the frequency oscilla-
tion values. We performed the whole-cell in vitro
spectroscopy on different cell types, isolated and
grown in culture with a high level of purity. For
each cell type, all preparations for spectroscopy
were done the same way. All cells were trypsin-
ized before spectroscopy, and in all of the spectra
there is a distinct lactate doublet, clearly dis-
cernible from the 1.28-ppm peak [figure 1A in
()]. Our results also indicate that the 1.28-ppm
peak is not due to trypsin-induced cell necrosis,
as suggested by Friedman (3), because one would
expect the peak to be present in all cell samples,
whereas it clearly was not [figure 1A in (/)].
Furthermore, the NAA peak is minimally present
in the NPC preparation, which is expected be-
cause it predominates in neurons [figure 1B in
(1)]. Therefore, our whole-cell spectra, calibrated
with TMS and analyzed for the amplitude of the
peak, overcome the potential pitfalls of whole-
cell "H-NMR.

Table 1. SVD-based analysis of semisynthesized data.

Relative amplitude 0.01 0.05 0.1 0.5 1
Mean estimate 0.028 0.049 0.098 0.501 0.993
RRMSE 244.0 15.8 11.3 5.5 2.8
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Jansen et al. (4) note additional concern
about our findings in whole embryonic stem
cells (ESCs). The variability of the 'H-NMR
acquisition was always controlled by perform-
ing spectroscopy of NPCs in parallel with other
samples studied, and the amplitude of the 1.28-
ppm peak in ESCs was always significantly
lower than in NPCs [figure 1D in (7)]. Further-
more, whereas Jansen et al. (14) examined the
extracts of ES-derived NPCs, for our whole-
cell studies we used the NPCs derived from the
mouse brain. Such ES-derived and somatic
neural stem cells are different in their transcrip-
tional and signaling profiles. A recent compar-
ison of the ES-derived and brain-derived
NPCs, which correspond closely to the prepa-
rations used in (/4) and in our study (/), re-
spectively, reveals numerous differences between
the two cell types, including the proliferation
ability, RNA profiles, enhanced mitogen-activated
protein kinase signaling, and up-regulation of
the insulin-like growth factor pathway in the
ES-derived versus somatic neural stem cells (23).
Thus, the differences between our NPC spectra
(1) and spectra obtained from extracts of NPCs
differentiated from ESCs (/4) may arise from
the difference in the experimental conditions
(whole cells versus extracts, respectively), the
nature of cells analyzed (ES-derived versus
somatic neural stem cells), and the type of ac-
quisition (regular spectroscopy versus HRMAS
spectroscopy), and such differences do not con-
tradict the published data (/4). In addition,
Jansen et al. (14) noted that they observed a
broad line next to the lactate resonance (1.33
ppm), particularly in the NPCs, which might
actually represent the metabolite we clearly de-
tect in the whole NPC spectra using the SVD-
based signal processing method. Our further
experiments employ alternative analytical meth-
ods for analysis of both in vitro and in vivo data
and have already provided encouraging pre-
liminary results.

To summarize, we performed whole-cell 'H-
NMR of a variety of different cell types exposed
to the same conditions throughout every step,
from sample preparations for the 'H-NMR ac-
quisition to signal analysis. The breadth of our
control experiments, as well as numerous ad-
ditional in vitro data we have acquired, gives
us the confidence that the 1.28-ppm metabo-
lite is enriched in NPCs. Furthermore, we have
performed alternative methodologies for data
analysis that confirm our findings and empha-
size the robustness of our analysis and the
accuracy of our claims. The ultimate resolu-
tion of the concerns raised lies in identification
of the precise molecular composition of the
1.28-ppm peak of NPCs, and such studies are
under way.

Regarding the concerns raised by Friedman
(3) about the processing of the raw in vivo data,
our studies indicate that the exogenous NPC
1.28-ppm biomarker could be observed even
when the raw data were processed using Fourier
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transform [figure 3B in (/)]. To detect the bio-
marker, the raw data had to be processed using
SVD-based algorithms [figure 3, A and C, in (/)].
For each in vivo case in (), we provided spectra
obtained by both Fourier transform (insets) and
SVD-based algorithms [figures 3 and 4 in (/)].
However, the comparison of spectra obtained by
the Fourier transform and spectra obtained by the
SVD-based methods can be misleading if con-
clusions are drawn only by their visual inspec-
tion. An excellent example of this problem is
demonstrated in a classic textbook on spectral
analysis (24). There, two seemingly different spec-
tra are shown, one that clearly suggests the
presence of two harmonics in the data and
another with a very broad peak and high-level
noise in the background. In fact, the two spectra
are equivalent and contain exactly the same
information; that is, one spectrum is a monotonic
transformation of the other. In our case, the re-
ported NPC 1.28-ppm SVD-based quantification
was calculated based on the estimated amplitude,
with reduced influence from neighboring spectral
tails. In addition, because of the differences in
spectral acquisition, the constraints of signal pro-
cessing of the in vitro, animal, and human data
are different. Overall, while both the acquisi-
tion and signal processing of in vivo data are
far more challenging than signal processing of

1 AUGUST 2008 VOL 321

in vitro data, our results make us confident that
our algorithm generates reliable and reproduc-
ible data.

Finally, we agree with the comment of the
authors (2—4) that more studies are essential
before more complex investigations of NPCs
in human brain disease can proceed. We are
confident that our conclusions will endure the
test of time and will advance our understanding
of NPC biology and biochemistry and the role
of these cells in health and disease.
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