8,207 research outputs found
Coexistence of bulk and surface states probed by Shubnikov-de Haas oscillations in BiSe with high charge-carrier density
Topological insulators are ideally represented as having an insulating bulk
with topologically protected, spin-textured surface states. However, it is
increasingly becoming clear that these surface transport channels can be
accompanied by a finite conducting bulk, as well as additional topologically
trivial surface states. To investigate these parallel conduction transport
channels, we studied Shubnikov-de Haas oscillations in BiSe thin films,
in high magnetic fields up to 30 T so as to access channels with a lower
mobility. We identify a clear Zeeman-split bulk contribution to the
oscillations from a comparison between the charge-carrier densities extracted
from the magnetoresistance and the oscillations. Furthermore, our analyses
indicate the presence of a two-dimensional state and signatures of additional
states the origin of which cannot be conclusively determined. Our findings
underpin the necessity of theoretical studies on the origin of and the
interplay between these parallel conduction channels for a careful analysis of
the material's performance.Comment: Manuscript including supplemental materia
Competition between Spin-Orbit Interaction and Zeeman Coupling in Rashba 2DEGs
We investigate systematically how the interplay between Rashba spin-orbit
interaction and Zeeman coupling affects the electron transport and the spin
dynamics in InGaAs-based 2D electron gases. From the quantitative analysis of
the magnetoconductance, measured in the presence of an in-plane magnetic field,
we conclude that this interplay results in a spin-induced breaking of time
reversal symmetry and in an enhancement of the spin relaxation time. Both
effects, due to a partial alignment of the electron spin along the applied
magnetic field, are found to be in excellent agreement with recent theoretical
predictions.Comment: 4 figures and 4 page
Towards modular compilers for effects
Compilers are traditionally factorised into a number of separate phases, such as parsing, type checking, code generation, etc. However, there is another potential factorisation that has received comparatively little attention: the treatment of separate language features, such as mutable state, input/output, exceptions, concurrency and so forth. In this article we focus on the problem of modular compilation, in which the aim is to develop compilers for separate language features independently, which can then be combined as required. We summarise our progress to date, issues that have arisen, and further wor
Mesoscopic order and the dimentionality of long-range resonance energy transfer in supramolecular semiconductors
We present time-resolved photoluminescence measurements on two series of
oligo-p-phenylenevinylene materials that self-assemble into supramolecular
nanostructures with thermotropic reversibility in dodecane. One set of
derivatives form chiral, helical stacks while the second set form less
organised, frustrated stacks. Here we study the effects of supramolecular
organisation on the resonance energy transfer rates. We measure these rates in
nanoassemblies formed with mixed blends of oligomers and compare them with the
rates predicted by Foerster theory. Our results and analysis show that control
of supramolecular order in the nanometre lengthscale has a dominant effect on
the efficiency and dimentionality of resonance energy transfer.Comment: 17 Pages, 5 Figures, Submitted to J. Chem. Phy
Slowing heavy, ground-state molecules using an alternating gradient decelerator
Cold supersonic beams of molecules can be slowed down using a switched
sequence of electrostatic field gradients. The energy to be removed is
proportional to the mass of the molecules. Here we report deceleration of YbF,
which is 7 times heavier than any molecule previously decelerated. We use an
alternating gradient structure to decelerate and focus the molecules in their
ground state. We show that the decelerator exhibits the axial and transverse
stability required to bring these molecules to rest. Our work significantly
extends the range of molecules amenable to this powerful method of cooling and
trapping.Comment: 4 pages, 5 figure
Local structure of liquid carbon controls diamond nucleation
Diamonds melt at temperatures above 4000 K. There are no measurements of the
steady-state rate of the reverse process: diamond nucleation from the melt,
because experiments are difficult at these extreme temperatures and pressures.
Using numerical simulations, we estimate the diamond nucleation rate and find
that it increases by many orders of magnitude when the pressure is increased at
constant supersaturation. The reason is that an increase in pressure changes
the local coordination of carbon atoms from three-fold to four-fold. It turns
out to be much easier to nucleate diamond in a four-fold coordinated liquid
than in a liquid with three-fold coordination, because in the latter case the
free-energy cost to create a diamond-liquid interface is higher. We speculate
that this mechanism for nucleation control is relevant for crystallization in
many network-forming liquids. On the basis of our calculations, we conclude
that homogeneous diamond nucleation is likely in carbon-rich stars and unlikely
in gaseous planets
Can Polymer Coils be modeled as "Soft Colloids"?
We map dilute or semi-dilute solutions of non-intersecting polymer chains
onto a fluid of ``soft'' particles interacting via a concentration dependent
effective pair potential, by inverting the pair distribution function of the
centers of mass of the initial polymer chains. A similar inversion is used to
derive an effective wall-polymer potential; these potentials are combined to
successfully reproduce the calculated exact depletion interaction induced by
non-intersecting polymers between two walls. The mapping opens up the
possibility of large-scale simulations of polymer solutions in complex
geometries.Comment: 4 pages, 3 figures ReVTeX[epsfig,multicol,amssymb] references update
Symbolic Reachability Analysis of B through ProB and LTSmin
We present a symbolic reachability analysis approach for B that can provide a
significant speedup over traditional explicit state model checking. The
symbolic analysis is implemented by linking ProB to LTSmin, a high-performance
language independent model checker. The link is achieved via LTSmin's PINS
interface, allowing ProB to benefit from LTSmin's analysis algorithms, while
only writing a few hundred lines of glue-code, along with a bridge between ProB
and C using ZeroMQ. ProB supports model checking of several formal
specification languages such as B, Event-B, Z and TLA. Our experiments are
based on a wide variety of B-Method and Event-B models to demonstrate the
efficiency of the new link. Among the tested categories are state space
generation and deadlock detection; but action detection and invariant checking
are also feasible in principle. In many cases we observe speedups of several
orders of magnitude. We also compare the results with other approaches for
improving model checking, such as partial order reduction or symmetry
reduction. We thus provide a new scalable, symbolic analysis algorithm for the
B-Method and Event-B, along with a platform to integrate other model checking
improvements via LTSmin in the future
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
On the use of mass-conserving wind fields in chemistry-transport models
A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity) by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere
- …