269 research outputs found
A rigorous formulation of the cosmological Newtonian limit without averaging
We prove the existence of a large class of one-parameter families of
cosmological solutions to the Einstein-Euler equations that have a Newtonian
limit. This class includes solutions that represent a finite, but otherwise
arbitrary, number of compact fluid bodies. These solutions provide exact
cosmological models that admit Newtonian limits but, are not, either implicitly
or explicitly, averaged
Post-Newtonian extension of the Newton-Cartan theory
The theory obtained as a singular limit of General Relativity, if the
reciprocal velocity of light is assumed to tend to zero, is known to be not
exactly the Newton-Cartan theory, but a slight extension of this theory. It
involves not only a Coriolis force field, which is natural in this theory
(although not original Newtonian), but also a scalar field which governs the
relation between Newtons time and relativistic proper time. Both fields are or
can be reduced to harmonic functions, and must therefore be constants, if
suitable global conditions are imposed. We assume this reduction of
Newton-Cartan to Newton`s original theory as starting point and ask for a
consistent post-Newtonian extension and for possible differences to usual
post-Minkowskian approximation methods, as developed, for example, by
Chandrasekhar. It is shown, that both post-Newtonian frameworks are formally
equivalent, as far as the field equations and the equations of motion for a
hydrodynamical fluid are concerned.Comment: 13 pages, LaTex, to appear in Class. Quantum Gra
The Newtonian Limit for Asymptotically Flat Solutions of the Vlasov-Einstein System
It is shown that there exist families of asymptotically flat solutions of the
Einstein equations coupled to the Vlasov equation describing a collisionless
gas which have a Newtonian limit. These are sufficiently general to confirm
that for this matter model as many families of this type exist as would be
expected on the basis of physical intuition. A central role in the proof is
played by energy estimates in unweighted Sobolev spaces for a wave equation
satisfied by the second fundamental form of a maximal foliation.Comment: 24 pages, plain TE
REE, Uranium (U) and Thorium (Th) contents in Betula pendula leaf growing around Komsomolsk gold concentration plant tailing (Kemerovo region, Western Siberia, Russia)
The article deals with the research findings of peculiarities of REE, Uranium and Thorium distribution in the territory surrounding the tailing of former Komsomolsk gold concentration plant according to the data from Betula pendula leaf testing. In the leaf element composition the slight deficiency of MREE and substantial excess of HREE are presented. In the nearest impacted area around the tailing, La, Yb, U and Th content, and Th/U ratio are lower than in the distant buffer area. It is shown, that value of Th/U ratio and REE can be an indicator for geochemical transformations of technogenic landscapes in mining districts. The results of the research can be used for biomonitoring of the territory around the tailing
Theory of the "honeycomb chain-channel" reconstruction of Si(111)3x1
First-principles electronic-structure methods are used to study a structural
model for Ag/Si(111)3x1 recently proposed on the basis of transmission electron
diffraction data. The fully relaxed geometry for this model is far more
energetically favorable than any previously proposed, partly due to the unusual
formation of a Si double bond in the surface layer. The calculated electronic
properties of this model are in complete agreement with data from
angle-resolved photoemission and scanning tunneling microscopy.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Lett (the ugly postscript
error on page 4 has now been repaired
Existence of families of spacetimes with a Newtonian limit
J\"urgen Ehlers developed \emph{frame theory} to better understand the
relationship between general relativity and Newtonian gravity. Frame theory
contains a parameter , which can be thought of as , where
is the speed of light. By construction, frame theory is equivalent to general
relativity for , and reduces to Newtonian gravity for .
Moreover, by setting \ep=\sqrt{\lambda}, frame theory provides a framework to
study the Newtonian limit \ep \searrow 0 (i.e. ). A number of
ideas relating to frame theory that were introduced by J\"urgen have
subsequently found important applications to the rigorous study of both the
Newtonian limit and post-Newtonian expansions. In this article, we review frame
theory and discuss, in a non-technical fashion, some of the rigorous results on
the Newtonian limit and post-Newtonian expansions that have followed from
J\"urgen's work
False friends in the Fanfanyu
In the present article, a remarkable phenomenon is brought to the attention of those interested in early Chinese translations of Buddhist texts: false friends in the Fanfanyu (T54n2130). Baochang's Sanskrit-Chinese lexicon that was compiled as early as 517 AD reveals some curious examples of faux amis. In the present contribution, this case will be illustrated with references from the Shanjian lü piposha (T24n1462), a fifth century Chinese translation of the Samantapāsādikā, Buddhaghosa's commentary on the Pāli Vinaya. The fact that Baochang did not realise that this text was not translated from Sanskrit, inadvertently gave rise to some interesting jeux de mots
Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4
Multiferroic materials, which reveal magnetic and electric order, are in the
focus of recent solid state research. Especially the simultaneous occurrence of
ferroelectricity and ferromagnetism, combined with an intimate coupling of
magnetization and polarization via magneto-capacitive effects, could pave the
way for a new generation of electronic devices. Here we present measurements on
a simple cubic spinel with unusual properties: It shows ferromagnetic order and
simultaneously relaxor ferroelectricity, i.e. a ferroelectric cluster state,
reached by a smeared-out phase transition, both with sizable ordering
temperatures and moments. Close to the ferromagnetic ordering temperature the
magneto-capacitive coupling, characterized by a variation of the dielectric
constant in an external magnetic field, reaches colossal values of nearly 500%.
We attribute the relaxor properties to geometric frustration, which is well
known for magnetic moments, but here is found to impede long-range order of the
structural degrees of freedom.Comment: 4 pages, 3 figure
- …