262 research outputs found

    EuroFlow-based flowcytometric diagnostic screening and classification of primary immunodeficiencies of the lymphoid system

    Get PDF
    Guidelines for screening for primary immunodeficiencies (PID) are well-defined and several consensus diagnostic strategies have been proposed. These consensus proposals have only partially been implemented due to lack of standardization in laboratory procedures, particularly in flow cytometry. The main objectives of the EuroFlow Consortium were to innovate and thoroughly standardize the flowcytometric techniques and strategies for reliable and reproducible diagnosis and classification of PID of the lymphoid system. The proposed EuroFlow antibody panels comprise one orientation tube and seven classification tubes and corresponding databases of normal and PID samples. The 8-color 12-antibody PID Orientation tube (PIDOT) aims at identification and enumeration of the main lymphocyte and leukocyte subsets; this includes naive pre-germinal center (GC) and antigen-experienced post-GC memory B-cells and plasmablasts. The seven additional 8(-12)-color tubes can be used according to the EuroFlow PID algorithm in parallel or subsequently to the PIDOT for more detailed analysis of B-cell and T-cell subsets to further classify PID of the lymphoid system. The Pre-GC, Post-GC, and immunoglobulin heavy chain (IgH)-isotype B-cell tubes aim at identification and enumeration of B-cell subsets for evaluation of B-cell maturation blocks and specific defects in IgH-subclass production. The severe combined immunodeficiency (SCID) tube and T-cell memory/effector subset tube aim at identification and enumeration of T-cell subsets for assessment of T-cell defects, such as SCID. In case of suspicion of antibody deficiency, PIDOT is preferably directly combined with the IgH isotype tube(s) and in case of SCID suspicion (e.g., in newborn screening programs) the PIDOT is preferably directly combined with the SCID T-cell tube. The proposed >= 8-color antibody panels and corresponding reference databases combined with the EuroFlow PID algorithm are designed to provide fast, sensitive and cost-effective flowcytometric diagnosis of PID of the lymphoid system, easily applicable in multicenter diagnostic settings world-wide

    The EuroFlow PID orientation tube for flow cytometric diagnostic screening of primary immunodeficiencies of the lymphoid system

    Get PDF
    Copyright © 2019 van der Burg, Kalina, Perez-Andres, Vlkova, Lopez-Granados, Blanco, Bonroy, Sousa, Kienzler, Wentink, Mejstríková, Šinkorova, Stuchly, van Zelm, Orfao and van Dongen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.In the rapidly evolving field of primary immunodeficiencies (PID), the EuroFlow consortium decided to develop a PID orientation and screening tube that facilitates fast, standardized, and validated immunophenotypic diagnosis of lymphoid PID, and allows full exchange of data between centers. Our aim was to develop a tool that would be universal for all lymphoid PIDs and offer high sensitivity to identify a lymphoid PID (without a need for specificity to diagnose particular PID) and to guide and prioritize further diagnostic modalities and clinical management. The tube composition has been defined in a stepwise manner through several cycles of design-testing-evaluation-redesign in a multicenter setting. Equally important appeared to be the standardized pre-analytical procedures (sample preparation and instrument setup), analytical procedures (immunostaining and data acquisition), the software analysis (a multidimensional view based on a reference database in Infinicyt software), and data interpretation. This standardized EuroFlow concept has been tested on 250 healthy controls and 99 PID patients with defined genetic defects. In addition, an application of new EuroFlow software tools with multidimensional pattern recognition was designed with inclusion of maturation pathways in multidimensional patterns (APS plots). The major advantage of the EuroFlow approach is that data can be fully exchanged between different laboratories in any country of the world, which is especially of interest for the PID field, with generally low numbers of cases per center.The coordination and innovation processes of this study were supported by the EuroFlow Consortium (Chairmen: MvdB and AO). MvZ is supported by Senior Research Fellowship GNT1117687 from the Australian National Health and Medical Research Council. TK and EM were supported by projects 15-28541A from Ministry of Health, LO1604 from Ministry of Education, Youth and Sports and GBP302/12/G101 from Grant Agency of the Czech Republic. MP-A, EB, and AO were supported by a grant from the Junta de Castilla y León (Fondo Social Europeo, ORDEN EDU/346/2013, Valladolid, Spain) and the CB16/12/00400 grant (CIBER/ONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, - Madrid, Spain- and FONDOS FEDER), the FIS PI12/00905-FEDER grant (Fondo de Investigación Sanitaria of Instituto de Salud Carlos III, Madrid, Spain) and AP119882013 grant (Fundación Mutua Madrileña, Madrid, Spain). Publishing costs for this article were covered by the International Union of Immunological Societies (IUIS).info:eu-repo/semantics/publishedVersio

    Dissection of the pre-germinal center B-cell maturation pathway in common variable immunodeficiency based on standardized flow cytometric EuroFlow tools

    Get PDF
    Copyright © 2021 del Pino-Molina, López-Granados, Lecrevisse, Torres Canizales, Pérez-Andrés, Blanco, Wentink, Bonroy, Nechvatalova, Milota, Kienzler, Philippé, Sousa, van der Burg, Kalina, van Dongen and Orfao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Introduction: Common Variable Immunodeficiency (CVID) is characterized by defective antibody production and hypogammaglobulinemia. Flow cytometry immunophenotyping of blood lymphocytes has become of great relevance for the diagnosis and classification of CVID, due to an impaired differentiation of mature post-germinal-center (GC) class-switched memory B-cells (MBC) and severely decreased plasmablast/plasma cell (Pb) counts. Here, we investigated in detail the pre-GC B-cell maturation compartment in blood of CVID patients. Methods: In this collaborative multicentric study the EuroFlow PID 8-color Pre-GC B-cell tube, standardized sample preparation procedures (SOPs) and innovative data analysis tools, were used to characterize the maturation profile of pre-GC B-cells in 100 CVID patients, vs 62 age-matched healthy donors (HD). Results: The Pre-GC B-cell tube allowed identification within pre-GC B-cells of three subsets of maturation associated immature B-cells and three subpopulations of mature naïve B-lymphocytes. CVID patients showed overall reduced median absolute counts (vs HD) of the two more advanced stages of maturation of both CD5+ CD38+/++ CD21het CD24++ (2.7 vs 5.6 cells/µl, p=0.0004) and CD5+ CD38het CD21+ CD24+ (6.5 vs 17 cells/µl, p1 (CD38, CD5, CD19, CD21, CD24, and/or smIgM) phenotypic marker (57/88 patients; 65%) for a total of 3 distinct CVID patient profiles (group 1: 42/88 patients, 48%; group 2: 8/88, 9%; and group 3: 7/88, 8%) and ii) CVID patients with a clearly altered pre-GC B cell maturation pathway in blood (group 4: 31/88 cases, 35%). Conclusion: Our results show that maturation of pre-GC B-cells in blood of CVID is systematically altered with up to four distinctly altered maturation profiles. Further studies, are necessary to better understand the impact of such alterations on the post-GC defects and the clinical heterogeneity of CVID.The coordination and innovation processes of this study were supported by the EuroFlow Consortium (Chairmen: MB and AO). LP-M was supported by FIS PI16/01605 and JTC by FIS PI13/02296 (Fondo de Investigación Sanitaria Instituto de Salud Carlos III, Madrid, Spain). The work was partially supported by grant PI20/01712-FEDER (Fondo de Investigación Sanitaria Instituto de Salud Carlos III, Madrid, Spain) and a grant from Fundación Mutua Madrileña (MMA, Madrid, Spain).info:eu-repo/semantics/publishedVersio

    In vitro acaricidal activity of several natural products against ibex-derived Sarcoptes scabiei

    Get PDF
    In this study we analysed the effect of the temperature, diverse strains of Bacillus thuringiensis, Lysinibacillus sphaericus and nanoformulations with essential plant oils (EONP) on the survival of Sarcoptes scabiei mites derived from naturally-infested Iberian ibex (Capra pyrenaica). In general, mites maintained at 12ºC survived more than those maintained at 35ºC (40.7 hr and 31.2 hr, respectively). Mites with no treatment survived 27.6 h on average. Mites treated with B. thuringiensis serovar. konkukian and geranium EONP showed significant reduction in their survival. Despite the fact that these agents seem to be promising candidates for controlling sarcoptic mange in the field, further research is still needed to get stable, efficient and eco-friendly acaricides

    Sarcoptic mange in wild ruminants in Spain: solving the epidemiological enigma using microsatellite markers

    Get PDF
    Background: In Spain, sarcoptic mange was first described in native wildlife in 1987 in Cazorla Natural Park, causing the death of nearly 95% of the local native population of Iberian ibex (Capra pyrenaica). Since then, additional outbreaks have been identified in several populations of ibex and other wild ungulate species throughout the country. Although the first epizootic outbreak in wildlife was attributed to the introduction of an infected herd of domestic goats, the origin and the cause of its persistence remain unclear. The main aims of this study are to understand (i) the number of Sarcoptes scabiei “strains” circulating in wild ruminant populations in Spain, and (ii) the molecular epidemiological relationships between S. scabiei and its hosts. Methods: Ten Sarcoptes microsatellite markers were used to characterize the genetic structure of 266 mites obtained from skin scrapings of 121 mangy wild ruminants between 2011 and 2019 from 11 areas in Spain. Results: Seventy-three different alleles and 37 private alleles were detected. The results of this study show the existence of three genetic strains of S. scabiei in the wild ruminant populations investigated. While two genetic clusters of S. scabiei were host- and geography-related, one cluster included multi-host mites deriving from geographically distant populations. Conclusions: The molecular epidemiological study of S. scabiei in wild ruminants in Spain indicates that the spreading and persistence of the parasite may be conditioned by host species community composition and the permissiveness of each host population/community to the circulation of individual “strains,” among other factors. Wildlife–livestock interactions and the role of human-driven introduction or trade of wild and domestic animals should be better investigated to prevent further spread of sarcoptic mange in as yet unaffected natural areas of the Iberian Peninsula

    EZH2 endorses cell plasticity to non-small cell lung cancer cells facilitating mesenchymal to epithelial transition and tumour colonization

    Get PDF
    CGL was funded by the Consejería de Salud y Familias, Junta de Andalucía (RH-0139-2020) and SG-P is funded by Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533). JAM is supported by RTI2018.101309B-C22 funded by MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” and by the Chair “Doctors Galera-Requena in cancer stem cell research”. PCS is funded by Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00) and FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20). The Landeira lab is supported by the Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005), the Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681) and the University of Granada (A-BIO-6-UGR20) grants.Reversible transition between the epithelial and mesenchymal states are key aspects of carcinoma cell dissemination and the metastatic disease, and thus, characterizing the molecular basis of the epithelial to mesenchymal transition (EMT) is crucial to find druggable targets and more effective therapeutic approaches in cancer. Emerging studies suggest that epigenetic regulators might endorse cancer cells with the cell plasticity required to conduct dynamic changes in cell state during EMT. However, epigenetic mechanisms involved remain mostly unknown. Polycomb Repressive Complexes (PRCs) proteins are well-established epigenetic regulators of development and stem cell differentiation, but their role in different cancer systems is inconsistent and sometimes paradoxical. In this study, we have analysed the role of the PRC2 protein EZH2 in lung carcinoma cells. We found that besides its described role in CDKN2A-dependent cell proliferation, EZH2 upholds the epithelial state of cancer cells by repressing the transcription of hundreds of mesenchymal genes. Chemical inhibition or genetic removal of EZH2 promotes the residence of cancer cells in the mesenchymal state during reversible epithelial–mesenchymal transition. In fitting, analysis of human patient samples and tumour xenograft models indicate that EZH2 is required to efficiently repress mesenchymal genes and facilitate tumour colonization in vivo. Overall, this study discloses a novel role of PRC2 as a master regulator of EMT in carcinoma cells. This finding has important implications for the design of therapies based on EZH2 inhibitors in human cancer patients.Junta de Andalucía (RH-0139-2020)Instituto de Salud Carlos III (CP19/00029, PI15/00336, PI19/01533)MCIN/AEI/10.13039/501100011033/FEDER “Una manera de hacer Europa” RTI2018.101309B-C22Chair “Doctors Galera-Requena in cancer stem cell research”Ministerio de Ciencia e Innovación (grant PID2020-119032RB-I00)FEDER/Junta de Andalucía-Consejería de Transformación Económica, Industria, Conocimiento y Universidades (grants P20_00335 and B‐CTS‐40‐UGR20)Spanish ministry of science and innovation (PID2019-108108-100, EUR2021-122005)Andalusian regional government (PC-0246-2017, PIER-0211-2019, PY20_00681)University of Granada (A-BIO-6-UGR20

    Age-associated distribution of normal B-cell and plasma cell subsets in peripheral blood

    Get PDF
    Background: Humoral immunocompetence develops stepwise throughout life and contributes to individual susceptibility to infection, immunodeficiency, autoimmunity, and neoplasia. Immunoglobulin heavy chain (IgH) isotype serum levels can partly explain such age-related differences, but their relationship with the IgH isotype distribution within memory B-cell (MBC) and plasma cell (PCs) compartments remains to be investigated. Objective: We studied the age-related distribution of MBCs and PCs expressing different IgH isotypes in addition to the immature/transitional and naive B-cell compartments. Methods: B-cell and PC subsets and plasma IgH isotype levels were studied in cord blood (n = 19) and peripheral blood (n = 215) from healthy donors aged 0 to 90 years by using flow cytometry and nephelometry, respectively. Results: IgH-switched MBCs expressing IgG1, IgG2, IgG3, IgA1, and IgA2 were already detected in cord blood and newborns at very low counts, whereas CD27+IgM++IgD+ MBCs only became detectable at 1 to 5 months and remained stable until 2 to 4 years, and IgD MBCs peaked at 2 to 4 years, with both populations decreasing thereafter. MBCs expressing IgH isotypes of the second immunoglobulin heavy chain constant region (IGHC) gene block (IgG1, IgG3, and IgA1) peaked later during childhood (2-4 years), whereas MBCs expressing third IGHC gene block immunoglobulin isotypes (IgG2, IgG4, and IgA2) reached maximum values during adulthood. PCs were already detected in newborns, increasing in number until 6 to 11 months for IgM, IgG1, IgG2, IgG3, IgA1, and IgA2; until 2 to 4 years for IgD; and until 5 to 9 years for IgG4 and decreasing thereafter. For most IgH isotypes (except IgD and IgG4), maximum plasma levels were reached after PC and MBC counts peaked. Conclusions: PC counts reach maximum values early in life, followed by MBC counts and plasma IgH isotypes. Importantly, IgH isotypes from different IGHC gene blocks show different patterns, probably reflecting consecutive cycles of IgH isotype switch recombination through life

    Anisotropic Confinement, Electronic Coupling and Strain Induced Effects Detected by Valence-Band Anisotropy in Self-Assembled Quantum Dots

    Get PDF
    A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In0.4Ga0.6 As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model
    corecore