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Abstract 

Background:  In Spain, sarcoptic mange was first described in native wildlife in 1987 in Cazorla Natural Park, causing 
the death of nearly 95% of the local native population of Iberian ibex (Capra pyrenaica). Since then, additional out‑
breaks have been identified in several populations of ibex and other wild ungulate species throughout the country. 
Although the first epizootic outbreak in wildlife was attributed to the introduction of an infected herd of domestic 
goats, the origin and the cause of its persistence remain unclear. The main aims of this study are to understand (i) the 
number of Sarcoptes scabiei “strains” circulating in wild ruminant populations in Spain, and (ii) the molecular epidemio‑
logical relationships between S. scabiei and its hosts.

Methods:  Ten Sarcoptes microsatellite markers were used to characterize the genetic structure of 266 mites obtained 
from skin scrapings of 121 mangy wild ruminants between 2011 and 2019 from 11 areas in Spain.

Results:  Seventy-three different alleles and 37 private alleles were detected. The results of this study show the exist‑
ence of three genetic strains of S. scabiei in the wild ruminant populations investigated. While two genetic clusters 
of S. scabiei were host- and geography-related, one cluster included multi-host mites deriving from geographically 
distant populations.

Conclusions:  Keywords:  Sarcoptes scabiei, Ruminant populations, Spain, Wildlife, Molecular markers, Molecular 
epidemiology, Host specificity, Genetic structure
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Background
The ubiquitous mite Sarcoptes scabiei affects more than 
100 mammalian species worldwide, causing a highly con-
tagious skin disease known as sarcoptic mange or scabies. 
Since it can result in significant declines in local wildlife 

populations, this disease has received particular attention 
in wildlife conservation and management for decades [1].

In Spain, sarcoptic mange was first described in native 
free-ranging wild ruminants in late 1987 in the Cazorla 
Natural Park [2], causing a decline of nearly 95% in the 
local native population of Iberian ibex (Capra pyrenaica) 
over 4 years [3]. Since then, additional mange outbreaks 
have been identified in other wild ungulate popula-
tions, including red deer (Cervus elaphus) [4], Canta-
brian chamois (Rupicapra pyrenaica parva) [5, 6], fallow 
deer (Dama dama) [7], roe deer (Capreolus capreolus) 
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[8], European mouflon (Ovis aries musimon) [2], and 
the non-native Barbary sheep (Ammotragus lervia) [9]. 
Whereas high mortality rates and associated population 
declines have been recorded in Cantabrian chamois and 
Iberian ibex [2], in the remaining species the infection 
seems to be less deleterious [4, 10].

Since the direct life cycle of S. scabiei relies on suitable 
hosts, a multi-host system can provide the parasite with 
higher opportunities to persist and spread [11]. Wild 
ruminants in Spain share habitat with different recog-
nized wild hosts for S. scabiei, such as red fox and Iberian 
wolf (Vulpes vulpes and Canis lupus signatus, respec-
tively) [12] and wild boar (Sus scrofa). While foxes are 
scavengers and might represent only a marginal and weak 
transmission pattern of sarcoptic mange for wild cervids 
and bovids, top predators such as the Iberian wolf, which 
is currently present in Spain mostly in the northern 
region (Asturias, Cantabria), might have prey–predator 
interactions with red and roe deer and, on rare occasions, 
with chamois [13, 14]. Interestingly, sarcoptic mange epi-
sodes in wild boar in Spain have never been reported in 
the scientific literature, although serological positivity to 
S. scabiei has been detected [15], and wildlife operators 
have occasionally reported crusted lesions compatible 
with sarcoptic mange in wild boars.

Although morphological studies of S. scabiei mites 
have failed to recognize host-specific differences [16, 
17], epidemiological and pathological findings have 
detected geographical and host-specific patterns of 
mange epidemics in wildlife [10, 12, 18]. In turn, these 
findings and growing molecular epidemiological data 
[19–22] have called into question the traditional, still 
widely accepted, classification of S. scabiei into species-
specific variants [11]. Recently, the use of molecular 
markers such as microsatellites (known as short tan-
dem repeats [STR] or simple sequence repeats [SSR]) 
has revealed the existence of host-specific genetic 
“strains.” While the traditional classification of spe-
cies-specific variants is based on clinical, epidemio-
logical, and biological criteria, host-specific strains are 
based on population genetic criteria that clearly iden-
tified differences between sarcoptic mange outbreaks 
in various animal species and areas. In particular, two 
main transmission models based on genetic structure 
were proposed, namely the “host–taxon” law [19] and 
the “prey-to-predator” interaction [20]. A third model 
revealing a possible cryptic transmission of S. scabiei 
between raccoon dogs and Japanese serow with weak 
prey–predator interaction (in contrast to the strong 
prey-to-predator interaction highlighted between chee-
tahs and Thompson gazelle in Kenya [20]) has also been 
proposed [21]. All the models rely on the assumption 
that close contact between different host species within 

the same habitat is possible and may result in effective 
multi-host transmission of S. scabiei. Environmental 
transmission is also a viable transmission model for 
sarcoptic mange in wild ungulates, as hypothesized by 
several authors in typical resting sites such as caves 
in Cazorla Natural Park [2] and in salt lick sites in the 
Alps [23], where the frequent and alternative transition 
of infected animals, or even the presence of infected 
carcasses, might favor the indirect transmission of the 
disease. Although the first epizootic outbreak reported 
in wildlife in the Iberian Peninsula was attributed to 
the introduction of an infected herd of domestic goats 
[2], the origin and the cause of the persistence of S. 
scabiei in wild ruminant populations are still unclear. 
Some decades ago, wild ungulate populations in Spain 
were largely evenly distributed in mountain territories, 
with rare interactions among free-ranging communi-
ties located in the different mountain systems. In recent 
years, wild ungulates have increased in both number 
and range in Spain, as in the rest of Europe, favored by 
rural abandonment, reforestation, reintroduction, and 
legislative changes [24]. This has connected formerly 
isolated populations through corridors. While the re-
creation of connection has a major positive effect on 
biodiversity, it also can favor the spread and transmis-
sion of pathogens such as S. scabiei. Whether livestock 
or human-driven wildlife movement and introduction 
play a key role in the spread of this parasitosis is still an 
ongoing and open debate [25].

Using S. scabiei mites isolated from 11 populations of 
six wild ruminant species in Spain, this study aims to 
describe the genetic structure of the circulating S. scabiei 
“strains,” namely (i) the number of S. scabiei strains that 
can be molecularly identified in wild ruminant popula-
tions in Spain, and (ii) the epidemiological relationships 
between S. scabiei and the wild ruminant communities 
within the main outbreak areas countrywide.

Methods
Collection of mites
Skin samples from 121 mangy wild ruminants were col-
lected during regular management plan activities or 
seasonal culling programs between 2011 and 2019 in 11 
areas in Spain (Fig. 1 and Table 1). The samples belonged 
to six ungulate species, namely Iberian ibex (83), Canta-
brian chamois (16), red deer (18), roe deer (2), aoudad 
(1), and European mouflon (1) (Table  1). Skin samples 
were stored at −20 °C or in 70% ethanol tubes until mite 
isolation. For each skin sample, three mites were isolated 
and individually stored following the post-frozen isola-
tion method [26]. All the mites were identified as S. sca-
biei following morphological criteria [27].
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Fig. 1  Map showing the 11 sampling sites of ruminants affected by sarcoptic mange in the Iberian Peninsula

Table 1  Geographical origin, host species, sample size, and sampling year of the Sarcoptes included in this study

Index case refers to the year of the first mange report in the wild host population of that area

NA not available
a  Mites that fulfilled the required criteria for the population genetic analysis after molecular analysis

Geographical origin Host species Sampled animals Sarcoptes isolateda Sampling year Index case

Sierra de Grazalema (Andalucía) C. pyrenaica 4 11 2017 2011

Sierra de las Nieves (Andalucía) C. pyrenaica 6 13 2017 1989

Sierra Nevada (Andalucía) C. pyrenaica 47 100 2017 1992

Tortosa-Beceite (Cataluña) C. pyrenaica 10 11 2018 2014

Sierra de Cazorla (Andalucía) C. pyrenaica 9 18 2017 1987

O. aries musimon 1 5

C. elaphus 2 10

Sierra de los Filabres (Andalucía) C. pyrenaica 3 4 2018 2012

Sierras del Noroeste (Murcia) C. pyrenaica 4 8 2019 1990

Sierra Espuña (Murcia) A. lervia 1 2 2019 1991

Cordillera Cantábrica (Asturias) R. pyrenaica 16 40 2010 1993

C. capreolus 2 4

C. elaphus 9 19

Sierra Morena (Andalucía) C. elaphus 2 4 2011 NA

Sierra de Demanda (La Rioja) C. elaphus 5 17 2011 2010
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DNA amplifications and microsatellite analysis
DNA was extracted from individual mites following the 
HotSHOT Plus ThermalSHOCK technique [28]. A 10× 
multiplex polymerase chain reaction (PCR) was then 
performed using ten validated primers extracted from 
the previously published panel [29] to target S. scabiei 
mites (Sarms 33, 34, 35, 36, 37, 38, 40, 41, 44, 45) [28, 
30]. Primers were 5′ labeled with 6-FAM, VIC, NED, or 
PET fluorescent dye tag (Applied Biosystems, Foster City, 
CA, USA). Twelve microliters of PCR mixture, consist-
ing of all primer pairs, ranging from 0.04 to 0.01 μM, 10× 
PCR buffer (200 mM KCl and 100  mM Tris–HCl, pH 
8.0), 200 μM of each dinucleotide and 0.5 U HotStarTaq 
polymerase (QIAGEN, Milano, Italy), were admixed with 
3  µl of individual mite DNA and subjected to thermal 
reactions in an Applied Biosystems 2720 thermal cycler 
(Applied Biosystems, Foster City, CA, USA), according to 
the following protocol: 15 min at 95  °C (initial denatur-
ing), followed by 37 cycles of three steps of 30 s at 94 °C 
(denaturation), 45 s at 55  °C (annealing), and 1.5 min at 
72  °C (extension), before a final elongation of 7  min at 
72  °C. The PCR products (1  µl) were then mixed with 
12 µl of formamide with GeneScan 500 LIZ Size Standard 
(Applied Biosystems, Foster City, CA, USA) in a 96-well 
plate and heated at 95  °C for 5  min. Capillary electro-
phoresis was performed with an ABI PRISM 310 Genetic 
Analyzer, and GeneMapper 4.0 software (Applied Biosys-
tems, Foster City, CA, USA) was used for the allele calls 
and microsatellite visualization. After molecular analysis, 
only the mites that fulfilled the required criteria (eight 
detectable loci out of the ten analyzed) were included in 
the molecular analyses.

Genetic analysis
Three main population genetics analyses were applied 
to the 266 mite microsatellite outputs: (i) Bayesian clus-
tering, (ii) genetic distance (to calculate the proportion 
of shared alleles), and iii) principal component analysis 
(PCA). The first one requires Hardy–Weinberg equilib-
rium (HWE), while no assumptions are required for the 
second and third analyses.

Descriptive statistics, including observed and expected 
heterozygosis (Ho and He, respectively), allelic richness 
(R), and HWE analysis, were carried out in the R 4.0 

software environment using the packages Adegenet 2.1.3 
and Pegas 0.3 [31, 32].

P values for the HWE test were based on Monte Carlo 
permutations of alleles. The Bayesian assignment test 
was computed with STRU​CTU​RE 2.3.4 software [33]. 
Burn-in and run lengths of Markov chains were 10,000 
and 100,000, respectively, and ten independent runs for 
each K (for K = 1–20) were run. The ancestry model was 
selected as the admixture model. The estimation of clus-
ters was performed as previously described [34], using 
the deltaK method. Individual mites were then assigned 
to the corresponding inferred cluster.

Genetic distances and multilocus proportion of shared 
alleles (DPS) among mite populations were computed 
between all possible pairs of individuals using microsatel-
lite analyzer (MSA 4.0) and Populations 1.2.32 software, 
and then displayed with interactive Tree of Life (iTOL) 
[35] as unrooted dendrogram.

Multivariate analysis (PCA) was performed with R 4.0 
without any preliminary assumptions on the origin of the 
mite samples. The populations of mites in this analysis 
were labeled as reported in Table 1.

Results
Seventy-three different alleles were detected in the 266 
mites isolated from the 11 wild ruminant populations 
using ten microsatellite loci as molecular markers (Addi-
tional file 1: Table S1). Depending on the loci, allele count 
ranged from three (Sarms 37) to 13 (Sarms 45). Thirty-
seven private alleles (alleles found only in one popula-
tion) were detected, ranging from 1 (Murcia) to 18 (La 
Rioja), whereas no private alleles were found in the Ibe-
rian ibexes from Tortosa Beceite, Sierra de Grazalema, 
Sierra de los Filabres, or Sierra de las Nieves, or in the red 
deer from Sierra Morena. Ho and He ranged from 0.03 
(Ho) and 0.04 (He) to 0.13 (Ho) and 0.72 (He) in Sarms 
44, Sarms 37, and Sarms 34, respectively (Table 2).

The mite populations from Sierra Nevada, Asturias, 
Rioja and Cazorla presented the highest genetic variabil-
ity, while Sierra de Grazalema, Sierra Morena and Sierra 
de los Filabres had the mite populations with lowest 
variability.

Significant deviation from HWE was observed over-
all (Additional file  2: Table  S2). In the Grazalema-, Los 

Table 2  Expected (He) and observed (Ho) heterozygosis and allelic richness (R) for each locus corresponding to the microsatellite 
(Sarms) number

Sarms33 Sarms34 Sarms35 Sarms36 Sarms37 Sarms38 Sarms40 Sarms41 Sarms44 Sarms45

He 0.72 0.63 0.64 0.57 0.58 0.66 0.73 0.28 0.71 0.71

Ho 0.04 0.13 0.04 0.08 0.03 0.09 0.07 0.05 0.03 0.11

R 0.8 0.61 0.78 0.79 0.94 0.8 0.79 0.68 0.84 0.5
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Filabres-, and Sierra Morena-derived mite populations, 
none of the samples supported the HWE (P < 0.01). The 
Bayesian assignment test, according to the DK method of 
Evanno (K = 3) [30], showed three main clusters of rumi-
nant-derived mites (Fig. 2).

The samples within each individual cluster were con-
sistent with an origin-based classification. The genetic 
distance among all the mites is displayed in the unrooted 
dendrogram in Fig.  3. The results of the multivariate 
analysis with R 4.0 are displayed in Fig. 4. The axes one 
and two accounted for 17.9% of the total variance. The 
PCA scatter plot revealed three main clusters separated 
by population origin: the mite population from La Rioja 
was the most divergent on the first axis. The other two 
clusters were distributed on the second axis and included 
the mite populations from Sierra Nevada, Sierra de las 
Nieves and Sierra de Grazalema, on the one hand (clus-
ter 2) and the mite populations from Cazorla, Asturias, 
Sierra Morena, Sierra de los Filabres and Tortosa on the 
other hand (cluster 3).

Overall, the three different cluster analyses performed 
in agreement, regardless of HWE, in defining three 
groups of ruminant-derived mites, consistent with the 
geographical origin, displayed in Fig. 5.

Discussion
The cluster analyses performed in our study consistently 
identified three main genetic clusters of S. scabiei in the 
mange-affected wild ruminant populations investigated 
throughout Spain. The three genetic clusters identified 
revealed that (i) different wild ruminant species were 
affected by the same S. scabiei strain, and (ii) circulating 

S. scabiei strains in Spain are both geographically and 
host-related, although (iii) geographical distance among 
mange-affected wild ruminant populations is not related 
to mite strain phylogeny, with distant populations 
affected by the same S. scabiei strain and close popula-
tions hosting different strains.

The two clusters related to a single species (La Rioja- 
and Sierra Nevada-derived, C. elaphus and C. pyrenaica, 
respectively) were also geographically limited to a single 
region or neighboring  areas. Conversely, the third clus-
ter (Cazorla/Asturias-derived) encompassed multi-host 
systems (C. elaphus, C. pyrenaica, R. pyrenaica, A. lervia, 
C. capreolus and O. a. musimon) and referred to differ-
ent areas in the Southeast, Northwest and more recently 
Northeast of the Iberian Peninsula (Fig. 5).

Sarcoptes scabiei mites do not have free-living stages; 
thus main genetic mixing occurs on the same host, and 
skin-scale patterns of variability have been identified 
even in the same individual host [36, 37]. Literature data 
support the hypothesis that the rare exchange (and thus 
possible mating) of mites among different hosts may 
condition the genetic and epidemiological features of S. 
scabiei and its spreading patterns in different host com-
munities [19–21]. In Spain, the spread of each putative 
“strain” to different sympatric host species (cluster 3) or 
not (clusters 1 and 2) might be dependent on (i) the host 
community composition and (ii) the maintenance and 
transmission capability of each “strain” by the individual 
host populations and communities. In multi-host sce-
narios, the more susceptible species would act as a reser-
voir, spreading sarcoptic mange to less susceptible hosts, 
which would likely not be capable of maintaining the 
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Fig. 2  Barplot generated with software Structure 2.3.4 displaying three main clusters (K = 3) of Sarcoptes-derived genetic strains
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transmission chain in the absence of the source host(s), as 
suspected in Cantabrian chamois (reservoir host) and red 
and roe deer (spillover hosts) in the Cantabrian Moun-
tains [4, 8, 12]. A similar pattern has been reported in the 
Alps, where the northern chamois (Rupicapra rupicapra) 
and the Alpine ibex (Capra ibex) play a reservoir role, 
whereas the red and roe deer and European mouflon are 
mere spillover hosts despite their abundance and sympa-
try with the aforementioned native caprines [38].

The imbricated distribution of S. scabiei clusters (Fig. 5) 
in scarcely connected wild ruminant populations (in par-
ticular, see the distribution of cluster 3), in parallel with 
the chronology of outbreak eruption which only partially 
supports an “oil spot” spreading pattern of the disease 
amongst naïve contiguous wild ruminant populations 
[39], might suggest that S. scabiei was likely introduced 
by infected livestock. The high number of private alleles, 
particularly in the La Rioja population, might indicate 
low gene flow and high genetic separation among mite 
populations from the rest of the Iberian Peninsula. Thus, 
the cluster represented by deer-related Sarcoptes from La 
Rioja (Sierra de la Demanda) might imply the existence 
of a new Sarcoptes-strain that started to spread after the 

index case was recorded in the local ungulate population 
of La Rioja (see Table 1), with unknown origin. Domestic 
goats and sheep are well-known suitable hosts for S. sca-
biei, and cross-transmission with wild caprines has been 
demonstrated experimentally [25]. Transmission of S. sca-
biei at the wild–domestic interface has also been reported 
under natural conditions [2, 22, 25, 38]. The presence or 
introduction of sympatric herds of domestic goats infected 
with S. scabiei has been proposed as the origin of the first 
epizootic outbreak reported in the Iberian Peninsula and 
affecting the Spanish ibex [2], the subsequent outbreak 
described in Cantabrian chamois [4], and also the most 
recent sarcoptic mange outbreak affecting the ibex popu-
lation in the Tortosa mountains [40]. However, mite iso-
lation from goats and molecular confirmation of these 
suspicions were not feasible, since herds had already been 
treated or were not present in the area at the time of the 
investigation. In accordance with previous studies [19–21], 
the analyzed samples significantly deviated from HWE, 
supporting the idea that these assumptions might be inap-
plicable in most natural populations [31]. Moreover, He 
and allelic richness were low throughout all loci, implying 
low gene diversity. Deviations from the HWE and from 

Fig. 3  Unrooted distance-based dendrogram constructed with Populations 1.2.32 software and displayed with iTOL 5.5.1 online software 
representing 266 individual mites from wild herbivores. Main clusters are separated by colors (red, blue, green) with corresponding attributes (host 
species and origin)
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random mating of mite populations might be explained by 
the nonrandom colonization dynamics of S. scabiei at the 
individual-host level [37] and at the subpopulation-host 
level (Wahlund effect).

Not all the ungulate populations or subpopulations in 
our sample were geographically connected, implying that 
gene flow between Sarcoptes mites was low, and in some 
cases, absent.

We hypothesize that, after the introduction of the mite 
into naïve wild ruminant populations, the parasite devel-
ops a distinctive epidemiological pattern, depending on 
host species composition, animal density, size and rela-
tive abundance, the sensitivity of each species, the spe-
cialization of the mite strain, and environmental and 
social factors, among others [10]. The role of human-
driven introduction or trade of wild and domestic ani-
mals should be considered as a viable explanation for 
sarcoptic mange spread in different areas of the Iberian 
Peninsula. Given the dramatic consequences of an easier-
to-manage disease in domestic livestock, such as sarcop-
tic mange, when introduction into naïve wild ruminant 
populations occurs, its importance should not be further 
neglected by those responsible for livestock health care 
and treatment [41]. This is especially relevant in those 
scenarios with wildlife–livestock interface, where the 
jump of shared pathogens may occur among susceptible 
and phylogenetically related host species.

Conclusions
This study establishes the current distribution of S. 
scabiei genetic clusters (“strains”) in the main popula-
tions of free-ranging wild ruminants in Spain, point-
ing to a probable origin from livestock in most of the 
populations affected by sarcoptic mange. Scabies-free 
populations of wild ungulates in Spain may be exposed 
to infected domestic caprines in the future. Therefore, 
further genetic investigations, including livestock, 
are required to fine-tune the epidemiological role of 
domestic ungulates in the spread of sarcoptic mange 
at the wildlife–livestock interface in the Iberian Pen-
insula. The use of molecular tools such as the micro-
satellite markers applied to the genetic epidemiology 
of S. scabiei might have important health implications 
in wildlife restocking management plans and livestock 
movements, as recently  proved in  other wildlife spe-
cies [42]. At the same time, results of this study sug-
gest that the current and widely accepted classification 
of S. scabiei into host-related variants (varietates) may 
be insufficient to represent the complexity that growing 
molecular epidemiological studies in natural scenarios 
seem to reveal. We expect that the use of next-gener-
ation sequencing such as whole genome sequencing 
will soon be applied to improve the robustness and 

Deer – La Rioja

Spanish ibex –
Sierra Nevada, 
Sierra de las Nieves, 
Sierra Grazalema

Chamois, deer, 
mouflon, aoudad, 
roe deer, Spanish 
ibex –
Cazorla, Sierra de 
Noroeste, Sierra 
Espuña Asturias, 
Sierra Morena, 
Filabres, Tortosa 

Fig. 4  Scatter plot generated with R 4.0 software (implemented by the package adegenet 2.1.3) representing principal component analysis (PCA) 
of 266 mites from wild herbivores deriving from ten different geographical origins. Variance is explained by 12.4 and 5.5% of components 1 and 2, 
respectively. The eigenvalues of the two axes are displayed in the bar plot on the left. Label names refer to the origin of host species (see Table 1). 
Colors (on the red-blue-green scale) and distances display the genetic diversity
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repeatability of phylogenetic studies of S. scabiei in ani-
mals and humans.
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