256 research outputs found

    Apprehension and interest: Therapist and student views of the role emerging placement model in the Republic of Ireland

    Get PDF
    Purpose - Role-emerging placements have been used internationally within occupational therapy education but are relatively new to Ireland. At times, there has been a debate in the profession regarding the use of this placement model. This paper aims to generate views from both occupational therapists and occupational therapy students on the use of role-emerging placements in the Republic of Ireland. Design/methodology/approach - Electronic surveys were administered to occupational therapy students and occupational therapists in Ireland. Quantitative data were analysed using the SPSS Statistics software package and the content of the open question responses were analysed into themes. Findings - Occupational therapists (n = 60) and occupational therapy students (n = 45) indicated that there were inconsistent views surrounding role-emerging placements. It is deemed as an effective method for student learning, but apprehension exists around inclusion within occupational therapy programmes in the Republic of Ireland. Preference was indicated towards inclusion of role-emerging placements on a part-time basis within formal occupational therapy education. Originality/value - Both respondent groups viewed that role-emerging placements can positively influence new areas of occupational therapy practice and concern over the use of the placement model requires further exploration and debate. This study is from an Irish context, although there are similarities with other countries’ use of the placement model. There is a need for research through an in-depth exploration of the learning experience of undertaking role-emerging placements from the students’ perspective and identification of supports required to promote an optimal learning experience

    TB84: Controlling the Saratoga Spittlebug in Young Red Pine Plantations by Removal of Alternate Hosts

    Get PDF
    The Saratoga spittlebug, Aphrophora saratogensis (Fitch), is a major pest of young red pine (Pinus resinosa Ait. ) and jack pine (Pinus banksiana Lamb. ) plantations in the Lake States, Ontario, and more recently in the Northeast. Although insecticides are successful in controlling the Saratoga spittlebug, the biology of the insect raises the possibility of an alternative method of control. The spittlebug requires an alternate host to complete its nymphal development. The objective of this study was to investigate the feasibility of using herbicides to control nymphal host plants of the spittlebug in red pine plantations.https://digitalcommons.library.umaine.edu/aes_techbulletin/1113/thumbnail.jp

    Tomosynthesis in pulmonary cystic fibrosis with comparison to radiography and computed tomography: a pictorial review

    Get PDF
    The purpose of this pictorial review is to illustrate chest imaging findings of cystic fibrosis (CF) using tomosynthesis (digital tomography), in comparison to radiography and computed tomography (CT). CF is a chronic systemic disease where imaging has long been used for monitoring chest status. CT exposes the patient to a substantially higher radiation dose than radiography, rendering it unsuitable for the often needed repeated examinations of these patients. Tomosynthesis has recently appeared as an interesting low dose alternative to CT, with an effective dose of approximately 0.08 mSv for children and 0.12 mSv for adults. Tomosynthesis is performed on the same X-ray system as radiography, adding only about 1 min to the normal examination time. Typical pulmonary changes in CF such as mucus plugging, bronchial wall thickening, and bronchiectases are shown in significantly better detail with tomosynthesis than with traditional radiography. In addition, the cost for a tomosynthesis examination is low compared to CT. To reduce the radiation burden of patients with CF it is important to consider low dose alternatives to CT, especially in the paediatric population. Tomosynthesis has a lower radiation dose than CT and gives a superior visualisation of pulmonary CF changes compared to radiography. It is important to further determine the role of tomosynthesis for monitoring disease progression in CF

    Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma

    Get PDF
    Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork

    Mitochondrial Changes in Ageing Caenorhabditis elegans – What Do We Learn from Superoxide Dismutase Knockouts?

    Get PDF
    One of the most popular damage accumulation theories of ageing is the mitochondrial free radical theory of ageing (mFRTA). The mFRTA proposes that ageing is due to the accumulation of unrepaired oxidative damage, in particular damage to mitochondrial DNA (mtDNA). Within the mFRTA, the “vicious cycle” theory further proposes that reactive oxygen species (ROS) promote mtDNA mutations, which then lead to a further increase in ROS production. Recently, data have been published on Caenorhabditis elegans mutants deficient in one or both forms of mitochondrial superoxide dismutase (SOD). Surprisingly, even double mutants, lacking both mitochondrial forms of SOD, show no reduction in lifespan. This has been interpreted as evidence against the mFRTA because it is assumed that these mutants suffer from significantly elevated oxidative damage to their mitochondria. Here, using a novel mtDNA damage assay in conjunction with related, well established damage and metabolic markers, we first investigate the age-dependent mitochondrial decline in a cohort of ageing wild-type nematodes, in particular testing the plausibility of the “vicious cycle” theory. We then apply the methods and insights gained from this investigation to a mutant strain for C. elegans that lacks both forms of mitochondrial SOD. While we show a clear age-dependent, linear increase in oxidative damage in WT nematodes, we find no evidence for autocatalytic damage amplification as proposed by the “vicious cycle” theory. Comparing the SOD mutants with wild-type animals, we further show that oxidative damage levels in the mtDNA of SOD mutants are not significantly different from those in wild-type animals, i.e. even the total loss of mitochondrial SOD did not significantly increase oxidative damage to mtDNA. Possible reasons for this unexpected result and some implications for the mFRTA are discussed

    Outlier SNPs detect weak regional structure against a background of genetic homogeneity in the Eastern Rock Lobster, Sagmariasus verreauxi

    Get PDF
    Genetic differentiation is characteristically weak in marine species making assessments of population connectivity and structure difficult. However, the advent of genomic methods has increased genetic resolution, enabling studies to detect weak, but significant population differentiation within marine species. With an increasing number of studies employing high resolution genome-wide techniques, we are realising that the connectivity of marine populations is often complex and quantifying this complexity can provide an understanding of the processes shaping marine species genetic structure and to inform long-term, sustainable management strategies. This study aims to assess the genetic structure, connectivity, and local adaptation of the Eastern Rock Lobster (Sagmariasus verreauxi), which has a maximum pelagic larval duration of 12 months and inhabits both subtropical and temperate environments. We used 645 neutral and 15 outlier SNPs to genotype lobsters collected from the only two known breeding populations and a third episodic population—encompassing S. verreauxi's known range. Through examination of the neutral SNP panel, we detected genetic homogeneity across the three regions, which extended across the Tasman Sea encompassing both Australian and New Zealand populations. We discuss differences in neutral genetic signature of S. verreauxi and a closely related, co-distributed rock lobster, Jasus edwardsii, determining a regional pattern of genetic disparity between the species, which have largely similar life histories. Examination of the outlier SNP panel detected weak genetic differentiation between the three regions. Outlier SNPs showed promise in assigning individuals to their sampling origin and may prove useful as a management tool for species exhibiting genetic homogeneity

    Mitochondrial function as a determinant of life span

    Get PDF
    Average human life expectancy has progressively increased over many decades largely due to improvements in nutrition, vaccination, antimicrobial agents, and effective treatment/prevention of cardiovascular disease, cancer, etc. Maximal life span, in contrast, has changed very little. Caloric restriction (CR) increases maximal life span in many species, in concert with improvements in mitochondrial function. These effects have yet to be demonstrated in humans, and the duration and level of CR required to extend life span in animals is not realistic in humans. Physical activity (voluntary exercise) continues to hold much promise for increasing healthy life expectancy in humans, but remains to show any impact to increase maximal life span. However, longevity in Caenorhabditis elegans is related to activity levels, possibly through maintenance of mitochondrial function throughout the life span. In humans, we reported a progressive decline in muscle mitochondrial DNA abundance and protein synthesis with age. Other investigators also noted age-related declines in muscle mitochondrial function, which are related to peak oxygen uptake. Long-term aerobic exercise largely prevented age-related declines in mitochondrial DNA abundance and function in humans and may increase spontaneous activity levels in mice. Notwithstanding, the impact of aerobic exercise and activity levels on maximal life span is uncertain. It is proposed that age-related declines in mitochondrial content and function not only affect physical function, but also play a major role in regulation of life span. Regular aerobic exercise and prevention of adiposity by healthy diet may increase healthy life expectancy and prolong life span through beneficial effects at the level of the mitochondrion

    Mitophagy plays a central role in mitochondrial ageing

    Get PDF
    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing

    Molecular, genetic and epigenetic pathways of peroxynitrite-induced cellular toxicity

    Get PDF
    Oxidative stress plays a key role in the pathogenesis of cancer and many metabolic diseases; therefore, an effective antioxidant therapy would be of great importance in these circumstances. Nevertheless, convincing randomized clinical trials revealed that antioxidant supplementations were not associated with significant reduction in incidence of cancer, chronic diseases and all-cause mortality. As oxidation of essential molecules continues, it turns to nitro-oxidative stress because of the involvement of nitric oxide in pathogenesis processes. Peroxynitrite damages via several distinctive mechanisms; first, it has direct toxic effects on all biomolecules and causes lipid peroxidation, protein oxidation and DNA damage. The second mechanism involves the induction of several transcription factors leading to cytokine-induced chronic inflammation. Finally, it causes epigenetic perturbations that exaggerate nuclear factor kappa-B mediated inflammatory gene expression. Lessons-learned from the treatment of several chronic disorders including pulmonary diseases suggest that, chronic inflammation and glucocorticoid resistance are regulated by prolonged peroxynitrite production
    corecore