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The prediction of grass dry matter intake (GDMI) and milk yield (MY) are important to aid sward and grazing management decision
making. Previous evaluations of the GrazeIn model identified weaknesses in the prediction of GDMI and MY for grazing dairy
cows. To increase the accuracy of GDMI and MY prediction, GrazeIn was adapted, and then re-evaluated, using a data set of
3960 individual cow measurements. The adaptation process was completed in four additive steps with different components of the
model reparameterised or altered. These components were: (1) intake capacity (IC) that was increased by 5% to reduce a general
GDMI underprediction. This resulted in a correction of the GDMI mean and a lower relative prediction error (RPE) for the total data
set, and at all stages of lactation, compared with the original model; (2) body fat reserve (BFR) deposition from 84 days in milk to
next calving that was included in the model. This partitioned some energy to BFR deposition after body condition score nadir had
been reached. This reduced total energy available for milk production, reducing the overprediction of MY and reducing RPE for MY
in mid and late lactation, compared with the previous step. There was no effect on predicted GDMI; (3) The potential milk curve
was reparameterised by optimising the rate of decrease in the theoretical hormone related to secretory cell differentiation and the
basal rate of secretory cell death to achieve the lowest possible mean prediction error (MPE) for MY. This resulted in a reduction in
the RPE for MY and an increase in the RPE for GDMI in all stages of lactation compared with the previous step; and (4) finally,
IC was optimised, for GDMI, to achieve the lowest possible MPE. This resulted in an IC correction coefficient of 1.11. This increased
the RPE for MY but decreased the RPE for GDMI compared with the previous step. Compared with the original model, modifying
this combination of four model components improved the prediction accuracy of MY, particularly in late lactation with a decrease
in RPE from 27.8% in the original model to 22.1% in the adapted model. However, testing of the adapted model using an
independent data set would be beneficial and necessary to make definitive conclusions on improved predictions.
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Implications

The adapted GrazeIn model predicts grass dry matter intake
(GDMI) and milk yield (MY) for spring calving grazing dairy
cows with increased prediction accuracy compared with
the original model. The adapted model can be used as a deci-
sion support tool to provide dairy farmers with more accurate
estimates of the GDMI and MY of cows in their herds. The use
of GrazeIn as a decision support tool could lead to reduced costs
of milk production and increased profitability through increased
accuracy in the grazing management decision-making process,
increased grass utilisation, increased stocking rates and
reductions in concentrate and forage supplementation.

Introduction

In 2015, the EU milk quota system will be removed and with
this, there is expected to be increased volatility in milk prices
(Shalloo et al., 2011). Grazed grass is the cheapest feed
source available to dairy farmers with a relative cost ratio of
grazed grass to concentrate of 1 : 2.4 (Finneran et al., 2010).
There is a strong inverse relationship between the total cost
of production and the grazed grass proportion in the dairy
cow diet (Dillon et al., 2005). The average milk production
cost is reduced by €0.025/l with a 10% increase in the pro-
portion of grazed grass in the dairy cow diet (Dillon et al.,
2005). Thus, increasing the grazed grass proportion also
reduces dependence on purchased feed, which is also subject
to substantial price volatility. Grass dry matter intake (GDMI)† E-mail: eva.lewis@teagasc.ie
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also has a major effect on the production performance
of grazing dairy cows (Dillon et al., 2005) and dairy farm
profitability (Shalloo, 2009). Increasing the grazed grass
proportion in the dairy cow diet results in lower milk pro-
duction costs and increased profitability (Shalloo, 2009).
The prediction of DMI in dairy cows has received much

attention through the years owing to the impact that DMI
has on cow performance (Ingvartsen, 1994). Accurate pre-
diction models simulating dairy cow GDMI are useful as
decision support tools with regard to the feeding and man-
agement of grazing dairy cows. Inaccurate prediction models
limit the ability to anticipate the technical consequences of
adopting different strategies for GDMI and milk yield (MY)
management on individual dairy farms (Shah and Murphy,
2006). Model evaluation is an important process to establish
the accuracy of model predictions and to identify weaknesses
that need to be addressed in the model (Tedeschi, 2006).
Using a tested and well-parameterised model to predict

the GDMI and MY of grazing dairy cows would provide
valuable information, aiding the decision-making process
around grazing management, to optimise the grazed grass
proportion in the dairy cow diet and to increase farm
profitability. The GrazeIn model (Delagarde et al., 2011a;
Faverdin et al., 2011) predicts GDMI and MY of individual
cows using individual cow data. GrazeIn accounts for the
variation in GDMI and MY by including cow, sward, grazing
management and supplementation input variables in its
calculations. Thus, GrazeIn could be an extremely useful
decision support tool for dairy farmers and advisors as the input
variables used by GrazeIn are readily available on farms.
Previous studies (O’Neill et al., 2013a and 2013b) evaluated

GrazeIn at both a herd level and an individual cow level using an
independent database. The detailed evaluations of GrazeIn by
O’Neill et al. (2013a and 2013b) highlighted the large error with
whichMY in autumn/late lactationwas predicted, compared with
spring and summer/early and mid lactation. As a result, it was
necessary to adapt GrazeIn. The objective of this study was to
adapt GrazeIn to improve the prediction accuracy of the model
for GDMI and MY prediction for spring calving grazing dairy
cows. The prediction accuracy was measured/assessed using
parameters such as the relative prediction error (RPE).

Material and methods

Model description
GrazeIn (Delagarde et al., 2011a; Faverdin et al., 2011) is a
semi-mechanistic prediction model that simulates the GDMI
and MY of grazing dairy cows using easily obtainable cow,
sward, grazing management and supplementation variables.
Cow variables include age, parity, week of lactation (WOL),
potential peak milk yield (PMYpeak), milk fat concentration,
milk protein concentration, BW, body condition score (BCS),
week of conception, BCS at calving and calf birth weight.
Sward variables include grass fill value (FV; an inverse func-
tion of its ‘ingestibility’), grass energy concentration (unité
fourragère lait (UFL); 1 UFL is equal to the net energy for
lactation of 1 kg of standard air-dry barley) and grass

protein value (true protein absorbable in the small intestine
when rumen fermentable energy is limiting microbial protein
synthesis in the rumen; PDIE). Grazing management vari-
ables include pre-grazing herbage mass and daily herbage
allowance. Supplementation variables include quantity of
supplementation offered and nutritive value (UFL, FV and
PDIE) of supplementation offered. Once all inputs have been
entered, the model uses these in the sub-models (GDMI
and MY) (Figure 1). The sub-models in GrazeIn are linked
such that outputs from one sub-model are being used auto-
matically as inputs in the other sub-model and vice-versa
through a process of iterative calculations focused on con-
vergence to predict GDMI and MY.
GrazeIn is capable of calculating GDMI and MY for each

individual cow or for the grazing herd (all cows grazing in the
same paddock, managed identically and receiving a sward of
equal quality and composition) using cow, sward, grazing
management and supplementation input variables.
Brief descriptions of the sub-models are provided below,

and more detailed descriptions are provided by Delagarde
et al. (2011a) and Faverdin et al. (2011).

Intake model, grazing model and interactions
The GrazeIn model (Figure 1) is based on the French fill unit
system (Dulphy et al., 1989). The fill unit system predicts the
intake capacity (IC) of the cow and FV of the feed in the same
units, namely, fill units (FU).
GrazeIn uses the additive effects of BW, BCS and PMY

and the multiplicative effects of the age of the cow (index of
maturity; IM) and physiological state of the cow (index of
lactation; IL and index of gestation; IG) to calculate IC
(Faverdin et al., 2011). GrazeIn uses age (months), WOL
(weeks) and week of conception (expressed in terms of WOL
that conception occurred) to calculate these indices:

Intake capacity FUð Þ
¼ ð9:4 + 0:0015 BW kgð Þ � 1:5 BCS ðscale 0�5Þ
+ 0:15 PMY ðkg=cow per dayÞÞ ´ IL ´ IG ´ IM ð1Þ

The prediction of GDMI occurs in two steps. The first step
is the calculation of theoretical GDMI. This assumes that the
cow was offered fresh cut grass ad libitum indoors and takes
into account the cow, sward and supplementation char-
acteristics (Faverdin et al., 2011). GrazeIn calculates the FV
of the grass consumed and the concentrate fed separately.
The second step amends the theoretical GDMI obtained
indoors by taking into account the factors that limit intake at
grazing (Faverdin et al., 2011). The grazing model accounts
for the restrictions placed on DMI when cows are grazing in
rotational or continuous stocked systems.
GrazeIn accounts for the interactions between the cow,

sward, grazing management and supplementation input
variables using intermediate values calculated by iterative
processes in the model (Delagarde et al., 2011a; Faverdin
et al., 2011).
A full description of the GDMI sub-model used in GrazeIn

can be found in Faverdin et al. (2011).
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MY model
The daily MY is predicted using the response of MY to energy
and protein supply as described by Faverdin et al. (2011).
The predicted MY is dependent on the requirements of the
mammary gland (PMY) and the quantities of energy and
protein supplied to the mammary gland by the feed con-
sumed by the cow. GrazeIn simulates a lactation curve based
on theoretical modelling of a dynamic population of secre-
tory cells in the mammary gland. The number of secretory
cells is used to simulate the shape of the PMY curve. The
dynamics of production during lactation are modelled on
secretory cell differentiation and secretory cell death.
The genetic potential of the cow to produce milk does not
affect the number of secretory cells in the mammary gland
but influences the ability of the secretory cells to synthesise
milk. This is reflected in the PMY of the cow. GrazeIn can
predict different MY responses to similar energy supplies
according to the genetic merit of the cow using the PMY.
The PMY of the cow is a function of parity (multiparous
or primiparous), WOL, PMYpeak and stage of gestation
(Faverdin et al., 2011). The GrazeIn model thus requires
PMYpeak as an input variable.

Moorepark database description
To carry out the adaptation and evaluation of GrazeIn, data
from the Moorepark database (O’Neill et al., 2013b) were
used as model input data to simulate GDMI and MY. From an
original database of 8787 individual cow measurements, a
data set of 4514 cows with measured data for all required
input variables was selected. From this data set, 554 cows
were removed, as these were cows in herds where >30% of
the herd had been removed owing to lack of complete
measured data. This resulted in a data set of 3960 individual
cow measurements available for use from 11 published stu-
dies spanning the years 2004 to 2009 (Table 1). A description
of the cow, sward, grazing management and supplementa-
tion variables for the data set can be found in Tables 2 and 3.
All cows in the data set were from spring calving herds
resulting in stage of lactation and season being confounded.
Cows in the data set had a mean PMYpeak of 32.7 kg/cow per
day (Table 2) and a mean actual daily GDMI of 15.9 kg DM/
cow per day. The mean actual MY was 20.4 kg/cow per day
(Table 2). Cows in the data set received concentrate sup-
plementation ranging from 0.0 kg to 6.2 kg DM/cow per day
(Table 3).

Figure 1 Structure of the GrazeIn model of grass dry matter intake (GDMI) and milk yield (Delagarde et al., 2011a; Faverdin et al., 2011).
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Model adaptation
GrazeIn was rebuilt using the C++ programming language
with the equations from Delagarde et al. (2011a) and
Faverdin et al. (2011). Data from the Moorepark data set
were used as input variables in both the original and the
rebuilt GrazeIn model. The predicted GDMI and MY from
both simulations were compared to test the reconstructed
model. Following this, the adaptation was carried out, with
each step in the adaptation process being additive to the
adaptation steps before it. The objective of the adaptation
was to increase the prediction accuracy through (1) the inclusion
and optimisation of an IC correction coefficient (for GDMI),
(2) the inclusion of a body fat reserve (BFR) deposition cal-
culation from 84 days in milk (DIM) onwards and (3) the

optimisation of the persistency of the potential lactation
curve (for MY). The adaptation process was carried out
and evaluated step-by-step with each step including the
adaptations described in the previous steps.

Inclusion of IC correction coefficient
Adaptation of the IC was undertaken to reduce the under-
prediction of GDMI by GrazeIn during lactation. This was
achieved by introducing a 5% correction coefficient to
increase the IC calculated and used by GrazeIn. This value
was derived as follows. The original model accounted for the
increase in the maintenance energy requirements of a grazing
cow compared with a stall-fed cow by increasing the main-
tenance energy requirements by 20% (Coulon et al., 1989).

Table 1 The 11 grass-based lactating dairy cow studies included in the data set of 3960 individual cow measurements, which was used to adapt the
GrazeIn model and to evaluate the adapted model

Studies in data set
Number of individual
cow measurements1 Year of study Description of study

O’Neill et al. (2011) 42 2009 Grazing compared with total mixed ration diet
Wims et al. (2010) 262 2009 Pre-grazing herbage mass by daily herbage allowance
Curran et al. (2010) 255 2008 Pre-grazing herbage mass by daily herbage allowance
Coleman et al. (2010) 1336 2006 to 2008 Strain of dairy cow by feeding system
Prendiville et al. (2010) 575 2006 to 2007 Dairy cow breed comparison
Kennedy et al. (2009) 12 2007 Restricting pasture access time
McEvoy et al. (2009) 291 2007 Pre-grazing herbage mass by daily herbage allowance
Kennedy et al. (2008) 196 2005 Daily herbage allowance by concentrate supplementation
McEvoy et al. (2008) 359 2006 Daily herbage allowance by concentrate supplementation
McCarthy et al. (2007) 476 2004 to 2005 Strain of dairy cow by feeding system
Kennedy et al. (2006) 156 2004 Early spring grazing by stocking rate

1Total number of individual cow measurements in each study.

Table 2 Mean, standard deviation and range of the cow, grass dry matter intake (GDMI) and milk yield variables for the total data set (n = 3960) and
the mean values in early (0 to 16 weeks), mid (17 to 25 weeks) and late lactation (>26 weeks)

Stage of lactation

Parameters Cows Mean s.d. Minimum Maximum Early Mid Late

Cow (during measurement period)
Parity1 3960 2.5 1.64 1.0 10.0 2.6 2.4 2.5
Potential peak milk yield (kg/cow per day)1 3960 32.7 7.29 17.4 66 33.4 32.4 32.3
Week of lactation1 3960 20 9.8 1 42 11 21 32
Milk fat concentration (g/kg)1 3960 41.4 7.79 17.5 82.0 38.3 39.9 46.6
Milk protein concentration (g/kg)1 3960 35.4 3.98 23.7 54.0 33.1 34.7 39.0
Week of conception (expressed in terms of week of
lactation that conception occurred)1,2

2986 15 4.7 5 39 14 15 15

Calf birth weight (kg)1 2986 39 6.0 20 64 39 39 38
Age (months)1 3960 47 20.4 22 135 45 46 49
BW (kg)1 3960 521 73.0 303 786 509 517 540
BCS1,3 3960 2.81 0.311 1.50 4.50 2.81 2.77 2.84
BCS at calving1,3 3960 3.19 0.432 2.00 5.00 3.17 3.20 3.19

Actual GDMI and milk yield
GDMI (kg DM/cow per day) 3960 15.9 3.28 4.98 26.3 16.3 16.9 15.6
Milk yield (kg/cow per day) 3960 20.4 7.20 3.1 44.6 26.1 19.7 13.9

1Variable used as input variable in the GrazeIn model.
2Only includes cows that were pregnant in the lactation during which the GDMI measurement took place.
3Body condition score (BCS) (scale 0 to 5) (Lowman et al., 1976).
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In the original model, the increased energy requirements of
grazing dairy cows were not matched by an increased IC.
A 20% increase in maintenance energy requirements equates
to 1 UFL/day for a 600 kg grazing cow compared with the
same cow if stall-fed (Coulon et al., 1989). Assuming the energy
concentration of grazed grass was 1.00 UFL/kg DM, this
equates to a requirement of an extra 1 kg of grazed grass.
Assuming a GDMI of 20 kg DM/cow per day, the cow would
have to increase GDMI by 5%.

BFR deposition
The original model accounted for mobilisation of BFR in the
first 84 DIM, expressed in UFL/day and calculated based on
PMYpeak, BCS at calving and WOL. The original model did not
account for the deposition of BFR after 84 DIM. In reality, the
cow regains BFR lost in early lactation, from nadir BCS to the
next calving (Friggens et al., 2004). Including the deposition
of BFR in the energy requirements would reduce the amount
of energy available for milk production and ultimately reduce
predicted MY. The new BFR deposition calculation in the
model includes the deposition of BFR from 84 DIM to next
calving. This was achieved by calculating the BFR mobilised
by the cow from calving to nadir BCS (DIM 84) and then
setting that to equal the BFR deposited from 84 DIM to next
calving (set at 365 days after previous calving) (Figure 2).

The energy mobilised in the first 84 DIM was calculated
using equation (2) for the average daily mobilisation of BFR
over the course of the lactation week in early lactation
(Faverdin et al., 2007 and 2011):

Average daily mobilisation of BFR over the course of the

lactation week in early lactation ðUFL=dayÞ
¼ �1 + ½ð1:33 ´ ða + ð0:47 ´ potential peak milk yieldÞ
+ ð1:89 ´ BCS at calvingÞÞ�
´ e�0:25 ´week of laction � e�week of lactation
� �

ð2Þ

where a is −9.54 for primiparous cows and −13.24 for
multiparous cows.
If the value obtained was negative then the value for

mobilisation was zero.
The total BFR mobilised in the first 84 DIM was calculated

using the equation (3):

Total BFR mobilised in early lactation UFLð Þ

¼ 7 days per week ´
X12
k¼1

average daily mobilisation of BFR
over the course of the lactation

week in early lactation UFL=dayð Þ
ð3Þ

Table 3 Mean, standard deviation and range of the sward, grazing management and supplementation variables for the total data set (n = 3960) and
the mean values in early (0 to 16 weeks), mid (17 to 25 weeks) and late lactation (>26 weeks)

Stage of lactation

Parameters Cows Mean s.d. Minimum Maximum Early Mid Late

Sward
Fill value (FU/kg DM)1 3960 0.96 0.030 0.89 1.04 0.95 0.96 0.99
UFL (UFL/kg DM)1,2 3960 0.95 0.077 0.76 1.10 0.99 0.93 0.91
PDIE (g/kg DM)1,3 3960 100 5.2 88 115 103 99 98
Pre-grazing sward height (cm) 3960 12.0 2.64 5.7 19.2 11.2 11.7 13.4
Post-grazing sward height (cm) 3960 4.9 1.08 2.7 8.3 4.6 5.0 5.1
Pre-grazing herbage mass (kg DM/ha) above 4 cm1 3960 1,696 547 664 4257 1656 1614 1822
Daily herbage allowance (kg DM/cow per day) above 4 cm 3960 16.6 5.14 6.5 36.9 16.3 17.6 16.1

Offered grass composition
Dry matter (g/kg) 3563 175 30.7 110 258 189 184 148
Organic matter (g/kg DM) 3563 893 25.5 804 938 897 891 890
CP (g/kg DM) 3563 223 30.2 165 321 230 218 218
ADF (g/kg DM) 3563 268 39.0 182 392 249 275 286
Organic matter digestibility (g/kg DM) 3563 788 41.1 645 857 810 787 764

Selected grass composition
Dry matter (g/kg) 3200 179 30.4 131 258 191 187 153
Organic matter (g/kg DM) 3200 915 16.8 834 941 918 913 912
CP (g/kg DM) 3200 222 28.7 155 290 227 221 215
ADF (g/kg DM) 3200 242 28.2 190 359 229 241 261
Organic matter digestibility (g/kg DM) 3200 846 18.0 775 874 857 845 831

Supplementation
Concentrate fed (kg DM/cow per day)1 3960 1.0 1.46 0.0 6.2 1.4 0.6 0.93
Concentrate UFL (UFL/kg DM)1 3960 1.10 0.027 1.04 1.16 1.10 1.09 1.10
Concentrate PDIE (g/kg DM)1 3960 124 6.7 102 144 125 123 124

1Variable used as input variable in the GrazeIn model.
2Unité Fourragère Lait (UFL) (feed unit for milk).
3True protein absorbable in the small intestine when rumen fermentable energy is limiting microbial protein synthesis in the rumen.

O’Neill, Ruelle, O’Donovan, Shalloo, Mulligan, Boland, Delaby, Delagarde and Lewis

600



It was assumed that the cow regained the total BFR
mobilised in early lactation between 84 DIM and the next
calving (365 days after previous calving). The linear rate
of BFR deposition from 84 DIM to the next calving was
calculated using equation (4):

Rate of increase in BFR deposition UFL=dayð Þ
¼ Total BFRmobilised in early lactation UFLð Þ
´

2
280´ 281 days

ð4Þ

The daily energy partitioned towards the BFR deposition
from 84 DIM to next calving (365 days after previous calving)
was calculated using equation (5):

Daily BFR deposition UFL=dayð Þ
¼ Rate of increase in BFR deposition UFL=dayð Þ
´ ½ð7 days ´ lactation weekÞ
�ð365 days after previous calving �280 DIMÞ� ð5Þ

Optimisation of the potential lactation curve (for MY)
Previous evaluations of GrazeIn (O’Neill et al., 2013a and
2013b) highlighted problems with the prediction of MY in
late lactation. MY is predicted by the model using the PMY
and the MY response to nutrient intake. To reduce the
overprediction of late lactation MY, the potential lactation
curve used to estimate MY by GrazeIn was reparameterised.
This process was carried out by optimising, for MY, the
coefficients for the rate of decrease in the theoretical hormone
related to secretory cell differentiation (kh) and for the basal rate
of secretory cell death (ks). The objective function was set to
minimise the overall mean prediction error (MPE) for MY by
adjusting the coefficients kh and ks.

MPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cow

ððactual milk yieldcow�predicted milk yieldcowÞ2Þ
Number of cows

vuut
(6)

A limit was placed on the range within which the coeffi-
cients could be optimised. All combinations within this range

were tested using the 3960 individual cow measurements in
the data set. The optimal combination of coefficients were
the coefficients that achieved the lowest overall MPE for the
prediction of MY.
If in the optimal combination, one or more of the coeffi-

cients reached the upper or lower limit value, then the limits
were widened to increase the range and the optimisation
was rerun. The coefficients in the original model for the rate
of decrease in the theoretical hormone related to secretory
cell differentiation were 0.08/day for primiparous and
0.13/day for multiparous cows, and the coefficients for the
basal rate of secretory cell death were 0.0015/day for pri-
miparous and 0.0025/day for multiparous cows. There was
no change in the optimised coefficient for kh for primiparous
or multiparous cows (0.08/day and 0.13/day, respectively).
The optimised coefficients ks were 0.0023/day for primiparous
and 0.0035/day for multiparous cows.

Optimisation of the IC correction coefficient (for GDMI)
The final step in the adaptation process was optimising the
IC for GDMI. This was undertaken to ensure that the previous
steps, carried out to improve MY, had not decreased the
prediction accuracy of GDMI. The objective function was set
to minimise the overall MPE for GDMI by optimising the IC
correction coefficient. A limit was placed on the range within
which the coefficient could be optimised. The different
coefficients within this range were tested using the 3960
individual cow measurements in the data set. The optimal
coefficient was the coefficient that achieved the lowest
overall MPE for the prediction of GDMI.

MPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
cow

ððactual GDMIcow�predicted GDMIcowÞ2Þ
Number of cows

vuut
(7)

If the optimal coefficient reached the upper or lower limit
value, then the limits were widened to increase the range
and the optimisation was run again.

Figure 2 The energy mobilised in early lactation and the energy used for body fat reserve deposition from 84 days in milk to next calving (365 days after
previous calving), for a cow with a potential peak milk yield of 20 kg milk/cow per day and a cow with a potential peak milk yield of 40 kg milk/cow per
day, both with a body condition score at calving of 2.75 (scale 0 to 5) (Lowman et al., 1976).
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Following each step of the adaptation process, the pre-
diction accuracy of the adapted model (including all previous
adaptation steps) was evaluated using the total data set of
3960 individual cow measurements and using sub-data sets
for early, mid and late lactation.

Statistical analysis
Predicted GDMI and MY were simulated by GrazeIn and the
adapted models using data from the data set of 3960 individual
cow measurements and input variables. The actual values from
the data set and the predicted values from the model for GDMI
and MY were compared using linear regression of the actual on
the predicted values. The accuracies of the original model and
the adapted models were determined using the origin, slope
and r2 of the relationships between the actual and the predicted
values (Hayirli et al., 2003). The statistical analysis carried out in
this paper is similar to the analysis carried out by O’Neill et al.
(2013a and 2013b) and uses the common deviance measures
proposed by Rook et al. (1990), namely, mean square prediction
error (MSPE), MPE and RPE (Hayirli et al., 2003).

MSPE ¼ Am�Pmð Þ2 + S2p 1�bð Þ2 + S2A 1�r2
� �

(8)

where Am and Pm are the means of the actual and predicted
GDMI/MY, respectively, SA

2 and Sp
2 are the variances of the

actual and predicted GDMI/MY, respectively, b is the slope of
the regression of actual on predicted, and r is the correlation
coefficient of actual and predicted. The MSPE is the sum of the
mean bias, line bias and random variation (Bibby and Toutenburg,
1977).
The MPE is the square root of the MSPE (Rook et al., 1990).

MPE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSPE

p
(9)

The RPE is the expression of the MPE as a percentage of
the actual measured GDMI/MY.

RPE ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSPE

p

Am

 !
´ 100 (10)

where Am is the mean of the actual measured GDMI/MY.
Ideally, models are considered robust for practical use if

they have a satisfactory level of accuracy for most data sets
(RPE⩽ 10%) rather than high accuracy for some data sets
and poor accuracy for others (Fuentes-Pila et al., 1996; Keady
et al., 2004). An RPE of ⩽10% is achievable for models
predicting DMI of dairy cows in confined systems of milk
production (Zom et al., 2012) but is very difficult to achieve
for models predicting GDMI of grazing dairy cows (Delagarde
and O’ Donovan, 2005).
The concordance correlation coefficient (CCC; Lin (1989))

was used to evaluate the extent of agreement between
the actual and predicted values. The CCC is calculated as
CCC = ρ×Cb, with ρ being the Pearson correlation coefficient
and Cb the bias correction factor. The Pearson correlation
coefficient reflects precision, that is, the degree to which the
predicted against actual values cluster about the regression line.
The bias correction factor reflects accuracy, that is, the degree
to which the regression line adheres to the 45° line through

the origin. The scale of Landis and Koch (1977) has been used
here to describe the degree of concordance, with 0.21 to 0.40
being ‘fair’; 0.41 to 0.60 being ‘moderate’; 0.61 to 0.80 being
‘substantial’; and 0.81 to 1.00 being ‘almost perfect’.

Results

Original GrazeIn model
Total data set. The model predicted GDMI with an RPE of
15.8% (Table 4). The majority of the MSPE was attributed to
random variation (0.85). The model had a CCC for GDMI of
0.69 with a Pearson correlation coefficient of 0.70 and a bias
correction factor of 0.98.
GrazeIn predicted MY with an RPE of 18.9% (Table 4). The

majority of the MSPE was attributed to random variation (0.95).
The model had a CCC for MY of 0.84 with a Pearson correlation
coefficient of 0.86 and a bias correction factor of 0.97.

By stage of lactation. Investigating GDMI by stage of lactation,
the RPE ranged from 15.2% to 16.4% (Tables 5, 6 and 7).
The bias between predicted and actual values was con-
sistently negative indicating the model on average under-
predicted GDMI during all stages of lactation. The mean
average bias ranged from −1.4 kg to −0.6 kg DM/cow per
day. In early lactation, the majority of the MSPE was attrib-
uted to random variation (0.95). This majority reduced to
0.73 for mid lactation and 0.77 for late lactation.
GrazeIn predicted MY in early lactation with an RPE of

15.9% (Table 5) but predicted MY of cows in mid and late
lactation with an RPE of 17.4% and 27.8%, respectively
(Tables 6 and 7). The mean average bias was−1.0 kg in early
lactation and was +1.3 kg and +2.5 kg in mid and late
lactation. This indicated that the model on average under-
predicted MY in early lactation and overpredicted MY in mid
and late lactation. The bias increased as stage of lactation
increased. The proportion of the MSPE attributed to the
mean bias, line bias and random variation was 0.41, 0.07
and 0.52 for late lactation.

Inclusion of IC correction coefficient in the model
Total data set. Grass DMI was predicted with an RPE of
15.0%. The majority of the MSPE was attributed to random
variation (0.95) (Table 4).
GrazeIn predicted a mean daily MY of 21.8 kg/cow per day

with an RPE of 19.6% (Table 4). The majority of the MSPE
was attributed to random variation (0.87).

By stage of lactation. Investigating GDMI by stage of lactation
the RPE ranged from 13.9% to 16.0% (Tables 5, 6 and 7). The
majority of the MSPE was attributed to random variation (1.00,
0.87 and 0.89 in early, mid and late lactation, respectively).
GrazeIn predicted MY in early lactation with an RPE of

15.4% (Table 5) but predicted MY of cows in mid and late
lactation with an RPE of 18.9% and 30.5%, respectively
(Tables 6 and 7). The proportion of the MSPE for MY
attributed to the mean bias was 0.01 for early lactation, 0.27
for mid lactation and 0.50 for late lactation.
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Table 4 Prediction accuracy of the GrazeIn model for grass dry matter intake (GDMI) (kg DM/cow per day) and milk yield (kg/cow per day) prediction of grazing dairy cows for the total data set (n = 3960)
investigating the original model and the model adapted to include (1) intake capacity correction coefficient, (2) body fat reserve deposition, (3) optimised potential lactation curve and (4) intake capacity
correction coefficient optimisation

Regression of A upon P Proportion of MSPE

Category Actual (A) s.d. Predicted (P) s.d. Origin Slope R 2 Model residuals (s.d.) Bias (P−A) MSPE (kg2) Mean bias Line bias Random RPE (%) CCC

GDMI
Original 15.9 3.3 14.9 2.4 1.74 0.95 0.50 2.31 −1.0 6.33 0.15 0.00 0.85 15.8 0.69
Model 1 15.9 3.3 15.5 2.6 1.98 0.90 0.50 2.32 −0.4 5.68 0.04 0.01 0.95 15.0 0.68
Model 2 15.9 3.3 15.5 2.6 1.97 0.90 0.50 2.32 −0.4 5.67 0.04 0.01 0.95 15.0 0.68
Model 3 15.9 3.3 15.1 2.5 1.92 0.93 0.49 2.35 −0.8 6.17 0.10 0.01 0.89 15.6 0.65
Model 4 15.9 3.3 15.7 2.6 2.24 0.87 0.48 2.36 −0.2 5.71 0.01 0.02 0.97 15.0 0.68

Milk yield
Original 20.4 7.2 21.2 6.5 0.33 0.95 0.73 3.76 0.8 14.90 0.04 0.01 0.95 18.9 0.84
Model 1 20.4 7.2 21.8 6.6 −0.09 0.94 0.73 3.73 1.4 16.03 0.12 0.01 0.87 19.6 0.83
Model 2 20.4 7.2 21.5 6.7 0.33 0.93 0.74 3.65 1.1 14.85 0.09 0.01 0.90 18.9 0.85
Model 3 20.4 7.2 20.6 7.0 1.48 0.92 0.79 3.31 0.2 11.31 0.00 0.03 0.97 16.5 0.89
Model 4 20.4 7.2 21.0 7.2 1.16 0.92 0.79 3.30 0.6 11.65 0.03 0.03 0.94 16.7 0.89

MSPE = mean square prediction error; RPE = relative prediction error; CCC = concordance correlation coefficient.

Table 5 Prediction accuracy of the GrazeIn model for grass dry matter intake (GDMI) (kg DM/cow per day) and milk yield (kg/cow per day) prediction of grazing dairy cows for early lactation (0 to 16 weeks)
(n = 1557) investigating the original model and the model adapted to include (1) intake capacity correction coefficient, (2) body fat reserve deposition, (3) optimised potential lactation curve and (4) intake
capacity correction coefficient optimisation

Regression of A upon P Proportion of MSPE

Category Actual (A) s.d. Predicted (P) s.d. Origin Slope R2 Model residuals (s.d.) Bias (P−A) MSPE (kg2) Mean bias Line bias Random RPE (%) CCC

GDMI
Original 15.5 3.7 14.9 2.7 0.66 1.00 0.54 2.47 −0.6 6.45 0.05 0.00 0.95 16.4 0.69
Model 1 15.5 3.7 15.4 2.8 0.83 0.95 0.54 2.47 −0.1 6.14 0.00 0.00 1.00 16.0 0.71
Model 2 15.5 3.7 15.4 2.8 0.83 0.95 0.54 2.47 −0.1 6.14 0.00 0.00 1.00 16.0 0.71
Model 3 15.5 3.7 15.2 2.8 0.68 0.98 0.54 2.49 −0.3 6.28 0.02 0.00 0.98 16.2 0.70
Model 4 15.5 3.7 15.8 2.9 0.92 0.93 0.54 2.49 0.3 6.31 0.01 0.01 0.98 16.2 0.71

Milk yield
Original 26.1 5.9 25.1 6.6 8.05 0.72 0.64 3.58 −1.0 17.18 0.05 0.20 0.74 15.9 0.79
Model 1 26.1 5.9 25.8 6.7 7.59 0.72 0.65 3.54 −0.3 16.12 0.01 0.22 0.77 15.4 0.80
Model 2 26.1 5.9 25.8 6.7 7.59 0.72 0.65 3.53 −0.3 16.10 0.01 0.22 0.77 15.4 0.80
Model 3 26.1 5.9 25.8 6.7 7.39 0.72 0.68 3.39 −0.3 14.98 0.01 0.23 0.76 14.8 0.81
Model 4 26.1 5.9 26.2 6.7 6.98 0.73 0.68 3.37 0.1 14.70 0.00 0.23 0.77 14.7 0.82

MSPE = mean square prediction error; RPE = relative prediction error; CCC = concordance correlation coefficient.
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Table 6 Prediction accuracy of the GrazeIn model for grass dry matter intake (GDMI) (kg DM/cow per day) and milk yield (kg/cow per day) prediction of grazing dairy cows for mid lactation (17 to 25
weeks) (n = 1153) investigating the original model and the model adapted to include (1) intake capacity correction coefficient, (2) body fat reserves deposition, (3) optimised potential lactation curve and
(4) intake capacity correction coefficient optimisation

Regression of A upon P Proportion of MSPE

Category Actual (A) s.d. Predicted (P) s.d. Origin Slope R 2 Model residuals (s.d.) Bias (P−A) MSPE (kg2) Mean bias Line bias Random RPE (%) CCC

GDMI
Original 16.9 3.0 15.5 2.3 2.85 0.90 0.48 2.18 −1.4 6.53 0.27 0.01 0.73 15.2 0.60
Model 1 16.9 3.0 16.1 2.4 3.12 0.85 0.47 2.20 −0.8 5.52 0.10 0.02 0.87 13.9 0.65
Model 2 16.9 3.0 16.1 2.4 3.11 0.85 0.47 2.20 −0.8 5.50 0.10 0.02 0.87 13.9 0.65
Model 3 16.9 3.0 15.7 2.3 2.98 0.88 0.47 2.21 −1.2 6.21 0.20 0.01 0.78 14.8 0.61
Model 4 16.9 3.0 16.4 2.5 3.35 0.82 0.45 2.23 −0.5 5.40 0.04 0.03 0.92 13.8 0.65

Milk yield
Original 19.7 4.7 21.0 4.6 3.28 0.78 0.59 3.01 1.3 11.80 0.15 0.09 0.77 17.4 0.74
Model 1 19.7 4.7 21.7 4.7 2.92 0.78 0.59 3.01 2.0 13.87 0.27 0.08 0.65 18.9 0.71
Model 2 19.7 4.7 21.4 4.7 3.06 0.78 0.60 3.00 1.7 12.99 0.23 0.08 0.69 18.3 0.72
Model 3 19.7 4.7 20.1 4.2 2.21 0.87 0.60 2.98 0.4 9.26 0.01 0.03 0.96 15.4 0.78
Model 4 19.7 4.7 20.5 4.2 1.97 0.87 0.59 3.00 0.8 9.91 0.06 0.03 0.91 16.0 0.75

MSPE = mean square prediction error; RPE = relative prediction error; CCC = concordance correlation coefficient.

Table 7 Prediction accuracy of the GrazeIn model for grass dry matter intake (GDMI) (kg DM/cow per day) and milk yield (kg/cow per day) prediction of grazing dairy cows for late lactation (>25 weeks)
(n = 1250) investigating the original model and the model adapted to include (1) intake capacity correction coefficient, (2) body fat reserve deposition, (3) optimised potential lactation curve and (4) intake
capacity correction coefficient optimisation

Regression of A upon P Proportion of MSPE

Category Actual (A) s.d. Predicted (P) s.d. Origin Slope R 2 Model residuals (s.d.) Bias (P−A) MSPE (kg2) Mean bias Line bias Random RPE (%) CCC

GDMI
Original 15.6 2.8 14.4 2.0 2.98 0.87 0.41 2.15 −1.2 6.01 0.22 0.01 0.77 15.7 0.55
Model 1 15.6 2.8 14.9 2.2 3.32 0.82 0.40 2.16 −0.7 5.26 0.08 0.03 0.89 14.7 0.59
Model 2 15.6 2.8 14.9 2.2 3.31 0.82 0.40 2.16 −0.7 5.23 0.08 0.03 0.89 14.7 0.59
Model 3 15.6 2.8 14.5 2.0 3.07 0.86 0.40 2.17 −1.1 5.98 0.20 0.01 0.79 15.7 0.55
Model 4 15.6 2.8 15.0 2.2 3.52 0.80 0.39 2.19 −0.6 5.26 0.06 0.04 0.91 14.7 0.59

Milk yield
Original 13.9 4.1 16.4 4.0 1.72 0.74 0.54 2.78 2.5 14.92 0.41 0.07 0.52 27.8 0.62
Model 1 13.9 4.1 16.9 4.1 1.49 0.73 0.53 2.79 3.0 17.90 0.50 0.06 0.43 30.5 0.57
Model 2 13.9 4.1 16.4 4.0 1.84 0.74 0.53 2.78 2.5 15.00 0.41 0.08 0.52 27.9 0.62
Model 3 13.9 4.1 14.6 3.4 1.17 0.87 0.52 2.81 0.7 8.64 0.06 0.02 0.92 21.2 0.70
Model 4 13.9 4.1 15.0 3.4 1.01 0.86 0.51 2.84 1.1 9.46 0.12 0.02 0.85 22.1 0.68

MSPE = mean square prediction error; RPE = relative prediction error; CCC = concordance correlation coefficient.

O
’N
eill,Ruelle,O

’Donovan,Shalloo,M
ulligan,Boland,Delaby,Delagarde

and
Lew

is

604



Inclusion of IC correction coefficient and BFR deposition
in the model
Total data set. The prediction accuracy results of GrazeIn for
GDMI were identical to the previous step (Table 4).
GrazeIn predicted a mean daily MY of 21.5 kg/cow per day

(Table 4). MY was predicted with an RPE of 18.9%. The
majority of the MSPE was attributed to random variation
(0.90).

By stage of lactation. The prediction accuracy results of
GrazeIn for GDMI were identical to the previous step (Tables
5, 6 and 7).
GrazeIn predicted MY in early lactation with an RPE of

15.4% (Table 5) but predicted MY of cows in mid and late
lactation with an RPE of 18.3% and 27.9%, respectively
(Tables 6 and 7). The proportion of the MSPE attributed to
the mean bias and line bias was 0.01 and 0.22 for early
lactation, 0.23 and 0.08 for mid lactation and 0.41 and 0.08
for late lactation.

Inclusion of IC correction coefficient and BFR deposition in
the model and optimisation of the potential lactation curve
Total data set. The model predicted GDMI with an RPE of
15.6% (Table 4). The majority of the MSPE was attributed to
random variation (0.89).
MY was predicted with an RPE of 16.5% (Table 4). The

majority of the MSPE was attributed to random variation (0.97).

By stage of lactation. Investigating GDMI by stage of
lactation the RPE ranged from 14.8% to 16.2% (Tables 5, 6
and 7). The majority of the MSPE was attributed to random
variation (0.98, 0.78 and 0.79 in early, mid and late lactation,
respectively).
GrazeIn predicted MY in early lactation with an RPE of

14.8% (Table 5) but predicted MY of cows in mid and late
lactation with an RPE of 15.4% and 21.2%, respectively
(Tables 6 and 7). The majority of the MSPE was attributed to
random variation (0.76, 0.96 and 0.92 in early, mid and late
lactation, respectively).

Inclusion of IC correction coefficient and BFRs deposition in
the model and optimisation of the potential lactation curve
and the IC correction coefficient
Total data set. The model predicted GDMI with an RPE of
15.0% (Table 4). The majority of the MSPE was attributed to
random variation (0.97). The model had a CCC for GDMI
of 0.68 with a Pearson correlation coefficient of 0.69 and a
bias correction factor of 0.97, which was similar to the
original model.
MY was predicted with an RPE of 16.7% (Table 4). The

majority of the MSPE was attributed to random variation
(0.94). The model had a CCC for MY of 0.89 with a Pearson
correlation coefficient of 0.89 and a bias correction factor
of 1.00.

By stage of lactation. Investigating GDMI by stage of lacta-
tion the RPE ranged from 13.8% to 16.2% (Tables 5, 6 and 7).
The majority of the MSPE was attributed to random

variation (0.98, 0.92 and 0.91 in early, mid and late lactation,
respectively).
GrazeIn predicted MY in early lactation with an RPE of

14.7% (Table 5) but predicted MY of cows in mid and late
lactation with an RPE of 16.0% and 22.1%, respectively
(Tables 6 and 7). The proportion of the MSPE attributed to
random variation was 0.77, 0.91 and 0.85 in early, mid and
late lactation, respectively.

Discussion

Various models have been developed for the prediction of
GDMI and MY of grazing dairy cows (Baudracco et al., 2010;
Delagarde et al., 2011a; Faverdin et al., 2011). One of these
models, GrazeIn (Delagarde et al., 2011a; Faverdin et al.,
2011), was identified by Delagarde and O’ Donovan (2005)
as being suitable for predicting the GDMI and MY of grazing
dairy cows. They evaluated GrazeIn using Irish and French
databases containing 190 and 114 grazing herds, respectively.
They found that GrazeIn predicted GDMI with a lower level of
error for Irish (RPE = 10%), French (RPE = 12%) and com-
bined databases (RPE = 11%) than three other published
GDMI models (Sepatou: Cros et al. (2003); Pâtur’IN: Delaby
et al. (2001); Diet-Check: Heard et al. (2004)). In addition,
with GrazeIn, more of the variation was attributable to
random variation than was the case for the other three
models. GrazeIn predicted more accurately than the other
three models because of its utilising more input factors and
estimating more interactions than those of other models
(Delagarde and O’ Donovan, 2005).
Numerous evaluations of GrazeIn have been carried out

using data from different countries (Delagarde and
O’ Donovan, 2005; Delagarde et al., 2011b; O’Neill et al.,
2013a and 2013b). O’Neill et al. (2013a) evaluated GrazeIn
at a herd level using an independent database, not only for
the database as a whole, but also by season and by grazing
management input variable. For the total database
(522 grazing herds), GrazeIn predicted GDMI with an RPE of
12.2% and MY with an RPE of 12.8%. Investigation by
season and input variable revealed that GrazeIn predicted
MY in autumn with a large level of error compared with
spring and summer and predicted MY less accurately for
herds offered grass with a low FV, high UFL and high PDIE
concentration compared with herds offered grass of lower
quality (higher FV, lower UFL and lower PDIE concentration).
In the study by O’Neill et al. (2013b), GrazeIn was eval-

uated at a cow level using 8787 individual cow measure-
ments from Irish studies. GrazeIn predicted GDMI with
an RPE of 15.5% and MY with an RPE of 16.7% for the
total database. There were large differences in prediction
accuracies between stages of lactation. GrazeIn predicted
MY in late lactation with a large level of error (RPE = 22.9%)
compared with early and mid lactation (RPE = 13.9% and
15.4%).
The detailed evaluations of GrazeIn by O’Neill et al. (2013a

and 2013b) highlighted the large error with which MY
in autumn/late lactation was predicted compared with

Adaptation of GrazeIn model for grazing dairy cows

605



spring/early and summer/mid lactation. As a result, it was
necessary to adapt GrazeIn.

Inclusion of IC correction coefficient
In the evaluation of the original model in the current paper,
GrazeIn predicted GDMI with an RPE of 15.8%. Stage of
lactation did not appear to have a significant effect on RPE
for GDMI prediction. The RPE values are within the range
reported by Keady et al. (2004) and Fuentes-Pila et al. (1996)
as acceptable (RPE 10% to 20%). As a result, the prediction
of GDMI by the original model was within acceptable limits,
but given the importance of GDMI it was deemed important
to try to improve it further. The absence of a line bias for
the total data set, and for the different stages of lactation,
indicated that the general structure of GrazeIn for the pre-
diction of GDMI was acceptable with the majority of the
MSPE attributed to random variation (Rook et al., 1990). At
grazing, the maintenance energy requirements of the cow
are 20% higher than the maintenance energy requirements
of a stall-fed cow indoors (Coulon et al., 1989). The original
model takes account of this, but does not include a similar
correction coefficient for the IC of the grazing cow. Kaufmann
et al. (2011) demonstrated that the higher energy requirements
of grazing cows in comparison with stall-fed cows might be
because of the increased level of physical activity required to
graze. Grazing cows spent more time walking and eating
than their counterparts indoors. The increased maintenance
energy requirements of the grazing cow are not accounted
for in the calculation of IC in GrazeIn but are accounted for
in a similar model for predicting DMI in Nordic countries
(Volden et al., 2011). Increasing the IC of the grazing cow by
5% in the model reduced the RPE for GDMI and the bias
between predicted and actual GDMI for the total data set
and for GDMI prediction in the different stages of lactation.
As the GDMI and MY sub-models are linked, the increased IC
resulted in an increase in energy intake with the extra energy
partitioned into MY. In early lactation, this resulted in an
improved MY prediction owing to the underprediction of MY
at this time. In mid and late lactation, however, there was an
increase in the RPE of MY because of an increase in the
overprediction of MY.

Inclusion of IC correction coefficient and BFR deposition
Following the inclusion of the IC correction coefficient, the
deposition of BFR was included in the model. Cows generally
mobilise BFR in early lactation and regain these reserves
during the subsequent pregnancy (Friggens et al., 2004). The
mobilisation of BFR in early lactation and the deposition of
BFR during pregnancy are natural components of the repro-
ductive cycle of the cow (Friggens et al., 2004). This increase
in BFR in late lactation is observed as an increase in BCS in
late lactation and late pregnancy (Roche et al., 2006). One
approach to dealing with BCS change and the mobilisation/
deposition of BFR is that of Baudracco et al. (2010) who used
a BCS model proposed by Friggens et al. (2004) to predict
the genetically driven pattern of BCS change throughout
lactation. The model of Friggens et al. (2004) is based on the

concept that at any given time in pregnancy or lactation
there is an optimal BCS that the cow is genetically driven to
achieve. It assumes that the cow is genetically driven to
achieve a target level of BCS at or around conception and at
next calving. Cows in early lactation will adjust the parti-
tioning of energy to achieve the target BCS at conception.
After conception, the cow will gradually increase BCS to
achieve the target BCS at next calving. An alternative
approach, used in the present study, was to include BFR
deposition from 84 DIM to the next calving. The total BFR
deposited during this period was equal to the BFR mobilised
from calving to 84 DIM. The calculation attempts to simulate
what occurs during lactation, namely, the partitioning of
energy in mid and late lactation into BFR deposition (Roche
et al., 2006) and away from MY. Including BFR deposition in
the model therefore reduced the overprediction of MY in mid
and late lactation. The reduction in the RPE was larger in late
lactation than in mid lactation because of the incremental
increase in energy partitioned towards BFR deposition later
in lactation (Figure 2) (Roche et al., 2006). Including BFR
deposition in the model had no effect on predicted GDMI as
the energy partitioned towards BFR deposition is not used in
the iterative calculation of GDMI. As a result, the prediction
accuracy for GDMI remained unchanged.

Inclusion of IC correction coefficient and BFR deposition
and optimisation of the potential lactation curve
GrazeIn includes a potential lactation curve model based on
the mammary gland model of Neal and Thornley (1983) to
simulate the PMY of the dairy cow, which is the functional
capacity of the mammary gland to produce milk (Faverdin
et al., 2011). The PMY lactation curve is simulated based on
the variation in an arbitrary number of secretory cells (fixed
number initially). The number of secretory cells varies
because of secretory cell differentiation and secretory cell
death (Neal and Thornley, 1983; Faverdin et al., 2011).
Secretory cell differentiation in the model is directly related

to a theoretical lactation hormone. The rate of exponential
decrease in this hormone, and thus a decrease in the secretory
cell differentiation rate, differs between primiparous and mul-
tiparous cows. This agrees with Paliser et al. (2001) who also
found that the rate of decrease in the theoretical hormone
related to secretory cell differentiation was higher in multi-
parous compared with primiparous cows. In the original model,
the coefficient for the rate of decrease in the theoretical hor-
mone related to secretory cell differentiation was 0.08/day for
primiparous and 0.13/day for multiparous cows (Faverdin et al.,
2011). The optimised coefficients were identical to those used in
the original model. This suggests that the values used in the
original model were accurate for MY predictions for grazing
dairy cows.
In GrazeIn, secretory cell death is a function of the number

of secretory cells and the cow’s stage of pregnancy. The
death of secretory cells is proportional to the number of
secretory cells (Faverdin et al., 2011). The basal rate of
secretory cell death is different for primiparous and multi-
parous cows. The original model had basal rate of secretory
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cell death coefficients of 0.0015/day for primiparous cows
and 0.0025/day for multiparous cows. The optimised basal
rate of secretory cell death coefficients were 0.0023/day for
primiparous and 0.0035/day for multiparous cows. The basal
rate of secretory cell death coefficient was larger for multi-
parous than for primiparous cows and this agrees with the
frequently made observation of lower lactation curve per-
sistency for multiparous compared with primiparous cows
(Stanton et al., 1992). Optimising the basal rate of secretory
cell death coefficients resulted in an increase in the coeffi-
cients for both primiparous and multiparous cows compared
with those used in the original model. This leads to a
decrease in the persistency of the potential lactation curve
used by the model. It is difficult to validate the PMY persis-
tency as the PMY curve is theoretical and assumes that MY is
not limited by nutrient intake. The persistency of cows in the
literature is the persistency of actual MY and is limited by the
nutrient supply available to the mammary gland (Faverdin
et al., 2011).
Optimising the basal rate of secretory cell death coeffi-

cients resulted in an improvement in the prediction accuracy
of the model for MY in all stages of lactation compared with
the previous step. There was a small reduction in the RPE for
MY prediction in early lactation, a larger reduction in mid
lactation and the largest reduction in late lactation. As a
result, MY prediction improved throughout lactation.
Optimising the basal rate of secretory cell death coeffi-

cients for primiparous and multiparous cows resulted in a
decrease in the prediction accuracy of GDMI compared with
the previous step. This was owing to a decrease in the PMY
persistency leading to a decrease in predicted GDMI and an
increase in the underprediction of GDMI by GrazeIn.

Inclusion of IC correction coefficient and BFR deposition
and optimisation of the potential lactation curve and IC
correction coefficient
The second step of the adaptation process improved the
MY prediction in late lactation as energy was diverted
towards BFR deposition and MY. The third step optimised the
potential lactation curve for MY, which also increased
the prediction accuracy of the model for MY, especially in
late lactation. This latter step, however, also changed IC
through adaptations to the PMY curve. It was then necessary
to reoptimise the model for GDMI to deal with the fact that
the previous two steps were carried out to improve MY
irrespective of GDMI. This was carried out by optimising the
correction coefficient for IC, resulting in a new correction
coefficient for IC of 1.11. This final optimisation succeeded in
improving the prediction accuracy of GDMI compared with
the original model and maintained the improvements in the
prediction accuracy of MY. The increase in the correction
coefficient may be owing to the fact that not all factors that
affect IC are accounted for by the original IC equation. The
Nordic feed evaluation system contains a similar model to
GrazeIn for predicting feed intake of dairy cows using IC and
FV (Volden et al., 2011). In their calculation of IC, the
increased maintenance energy requirements of loose-housed

and grazing cows compared with stall-fed cows are
accounted for. Season may affect IC as grazing lactating
dairy cows consumed 10% less grass in autumn than in
spring, even though cows were at the same stage of lactation
and grazing grass of the same digestibility (Corbett et al.,
1963). The lower intake in autumn may be attributed
to the greater proportion of dead material in the sward
(Le Du et al., 1981), increased area rejected because of
excreta contamination (Greenhalgh and Reid, 1969) and
shorter day length affecting grazing intensity (Linnane et al.,
2001). Including extra factors such as these to calculate
IC could reduce or remove the IC correction coefficient.
In addition or alternatively, the coefficients for the existing
input variables in the calculation of IC could be repar-
ameterised to increase their effect on IC giving rise to a
greater IC, thus reducing or removing the requirement for an
IC correction coefficient.

Conclusion

The adaptation of GrazeIn improved the GDMI and MY
prediction accuracy by using the original input variables,
adding new equations to the model and optimising some
coefficients in the model. The adaptations not only improved
the prediction accuracy of GDMI and MY prediction across
the total data set but also in each stage of lactation, parti-
cularly MY in late lactation. Future work on GrazeIn should
aim to test whether using new input variables not previously
included would increase the prediction accuracy of GDMI and
MY. Further testing of the adapted model, using an independent
data set, would be beneficial.
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