3,031 research outputs found

    PROTECTING SHELL EGGS BETWEEN PACKING PLANT AND SUPERMARKET

    Get PDF
    Studies the importance of factors affecting eggshell damage such as type of pack, age of laying hen and season of year.Agribusiness,

    PREPARING FOR A COMPUTER SYSTEM IN A WHOLESALE FRUIT AND VEGETABLE COMPANY

    Get PDF
    Agribusiness, Research and Development/Tech Change/Emerging Technologies,

    Electronic instabilities of a Hubbard model approached as a large array of coupled chains: competition between d-wave superconductivity and pseudogap phase

    Get PDF
    We study the electronic instabilities in a 2D Hubbard model where one of the dimensions has a finite width, so that it can be considered as a large array of coupled chains. The finite transverse size of the system gives rise to a discrete string of Fermi points, with respective electron fields that, due to their mutual interaction, acquire anomalous scaling dimensions depending on the point of the string. Using bosonization methods, we show that the anomalous scaling dimensions vanish when the number of coupled chains goes to infinity, implying the Fermi liquid behavior of a 2D system in that limit. However, when the Fermi level is at the Van Hove singularity arising from the saddle points of the 2D dispersion, backscattering and Cooper-pair scattering lead to the breakdown of the metallic behavior at low energies. These interactions are taken into account through their renormalization group scaling, studying in turn their influence on the nonperturbative bosonization of the model. We show that, at a certain low-energy scale, the anomalous electron dimension diverges at the Fermi points closer to the saddle points of the 2D dispersion. The d-wave superconducting correlations become also large at low energies, but their growth is cut off as the suppression of fermion excitations takes place first, extending progressively along the Fermi points towards the diagonals of the 2D Brillouin zone. We stress that this effect arises from the vanishing of the charge stiffness at the Fermi points, characterizing a critical behavior that is well captured within our nonperturbative approach.Comment: 13 pages, 7 figure

    6-N-Trimethyllysine metabolism and carnitine biosynthesis in N. crassa

    Get PDF
    6-N-Trimethyllysine metabolism and carnitine biosynthesi

    Asymmetric transmission of linearly polarized light at optical metamaterials

    Full text link
    We experimentally demonstrate a three-dimensional chiral optical metamaterial that exhibits an asymmetric transmission for forwardly and backwardly propagating linearly polarized light. The observation of this novel effect requires a metamaterial composed of three-dimensional chiral metaatoms without any rotational symmetry. Our analysis is supported by a systematic investigation of the transmission matrices for arbitrarily complex, lossy media that allows deriving a simple criterion for asymmetric transmission in an arbitrary polarization base. Contrary to physical intuition, in general the polarization eigenstates in such three-dimensional and low-symmetry metamaterials do not obey fxed relations and the associated transmission matrices cannot be symmetrized

    Stellar (n,γ) cross sections of ²³Na

    Get PDF
    The cross section of the ²³Na(n,γ)²⁴Na reaction has been measured via the activation method at the Karlsruhe 3.7 MV Van de Graaff accelerator. NaCl samples were exposed to quasistellar neutron spectra at kT = 5.1 and 25 keV produced via the ¹⁸O(p,n)¹⁸F and ⁷Li(p,n)⁷Be reactions, respectively. The derived capture cross sections (σ)kT=5keV = 9.1 ± 0.3mb and (σ)kT=25keV = 2.03 ± 0.05 mb are significantly lower than reported in literature. These results were used to substantially revise the radiative width of the first ²³Na resonance and to establish an improved set of Maxwellian average cross sections. The implications of the lower capture cross section for current models of s-process nucleosynthesis are discussed

    Discrete solitons in coupled active lasing cavities

    Get PDF
    We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in the low-amplitude limit. A new family of stable localized structures is found: these are bright and grey cavity solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type can be controlled by the discrete diffraction and are stable when the bistability of homogenous states is absent.Comment: 3 pages, 3 figures, accepted to Optics Letters (October 2012

    Circular Optical Nanoantennas: An Analytical Theory

    Full text link
    An entirely analytical theory is provided for describing the resonance properties of optical nanoantennas made of a stack of homogeneous discs, i.e. circular patch nanoantennas. It consists in analytically calculating the phase accumulation of surface plasmon polaritons across the resonator and an additional contribution from the complex reflection coefficient at the antenna termination. This makes the theory self-contained with no need for fitting parameters. The very antenna resonances are then explained by a simple Fabry-Perot resonator model. Predictions are compared to rigorous simulations and show excellent agreement. Using this analytical model, circular antennas can be tuned by varying the composition of the stack

    Stellar neutron capture cross sections of ²⁰ ²¹ ²²Ne

    Get PDF
    The stellar (n,γ) cross sections of the Ne isotopes are important for a number of astrophysical quests, i.e., for the interpretation of abundance patterns in presolar material or with respect to the s-process neutron balance in red giant stars. This paper presents resonance studies of experimental data in the keV range, which had not been fully analyzed before. The analyses were carried out with the R-matrix code sammy. With these results for the resonant part and by adding the components due to direct radiative capture, improved Maxwellian-averaged cross sections (MACS) could be determined. At kT=30keV thermal energy we obtain MACS values of 240±29,1263±160, and 53.2±2.7 μbarn for ²⁰Ne,²¹Ne, and ²²Ne, respectively. In earlier work the stellar rates of ²⁰Ne and ²¹Ne had been grossly overestimated. ²²Ne and ²⁰Ne are significant neutron poisons for the s process in stars because their very small MACS values are compensated by their large abundances
    corecore