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Discrete solitons in coupled active lasing cavities
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We examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities
(waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in
the low-amplitude limit. A new family of stable localized structures is found: these are bright and grey cavity
solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type
can be controlled by the discrete diffraction and are stable when the bistability of homogenous states is absent.
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Due to the huge progress in semiconductor-based pho-
tonic devices, a multitude of experimentally achievable
concepts have arisen, aimed at performing optical pro-
cessing and light reconfiguration [1, 2]. One of these
concepts relates to light manipulation in semiconduc-
tor microcavities closed by high-reflectivity Bragg re-
flectors (microresonators). The cavity medium consists
typically of quantum well structures which can be ab-
sorbing or (with electrical or optical pumping) provide
gain [1]. The soliton solutions in driven optical cavities
(cavity solitons, CS) have attracted much attention be-
cause of their potential applications in information pro-
cessing and optical memory schemes: The ability to con-
trol their switch-on/off process by an address beam, and
their location by introducing gradients in the holding
beam makes them interesting as mobile pixels for recon-
figurable arrays of all-optical processing units [1]. The
CS are a particular realization of the dissipative soliton
notion – localized structures existing due to the balance
between dissipation, nonlinearity and diffraction [2].
A relatively new direction in the light processing in

optical cavities refers to coupled systems of microres-
onators [3–9] where the excitation level of each cavity
(or of an ordered pattern) can serve as an elementary
’pixel’. These ’pixels’ are based on yet another type of
dissipative solitary structures – the discrete cavity soli-
tons (DCS), which are localized excitations in coupled
arrays of nonlinear cavities. Achieving controlled manip-
ulations with ’pixels’ requires a detailed study of the
properties of these objects: nucleation thresholds, stabil-
ity, mobility etc [3]. It has to be noted that, unlike the
continuum case [1], the studies of DCS have so far only
dealt with the case of a passive cavity, i.e. the losses were
assumed to dominate over the lasing gain [4–9]. At the
same time there is an interesting idea of self-sustained
light spots in cavities with active gain [1], where no ex-
ternal driving is needed for supporting the stability of
the CS (pixels). Therefore additional efforts are needed
to address specifically the case of DCS in active media.

In this Letter we, for the first time to our knowledge,
consider the properties of DCS in coupled active cavities

and demonstrate that their structure and stability can
be drastically different from their counterparts in passive
systems [3–9]. In addition, we show that by adjusting the
coupling (which is an example of a discrete diffraction

management) one can control the stability of the DCS
(a similar idea for passive planar resonators was used
in [10]) which can be implemented as a useful tool for
all-optical processing in discrete systems.
We consider a regular array of evanescently coupled

identical nonlinear cavities with high-reflectivity mirrors
placed at their facets, driven by a homogeneous holding
beam having a normal incidence. The mean-field model
for the light distribution within the array can be derived
from the coupled-mode equations [4] assuming that i) the
frequency detuning from the cavity resonance is small
(high-finesse cavities) and ii) the temporal dynamics is
slow compared to the round-trip time, i.e. the struc-
ture is short compared to the coupling and nonlinear-
ity lengths (an effective cavity length is on the order of
1-2µm, though much longer structures can also be fab-
ricated [1]). Then the system of (normalized) equations
governing the dynamics of the averaged beam amplitude
inside the n-th cavity, An, reads as:

(

i
d

dt
+∆+ α|An|2

)

An +

+ C
(

An+1 +An−1 − 2An

)

− iF (An) = P, (1)

where all coefficients are real, C > 0 characterizes the
coupling strength, ∆̃ = ∆ − 2C is the detuning of the
pump frequency from the resonant one, α characterizes
the strength of the nonlinear (Kerr) polarization, P > 0
is the amplitude of the holding beam and F (An) de-
scribes dissipative effects. The field An is normalized to
the lasing saturation intensity I0: An/

√
I0 → An, and

the time to the cavity round trip time (see also [4]).
The existence and stability properties of DCS in model

(1) can be essentially different from those of the continu-
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ous counterparts [3,4]. In this Letter we will specifically
concentrate on highly discrete solutions occurring in the
case of defocusing nonlinearity, α < 0, existing up to a
limiting value of C and having no continuum limit. We
opt for a simple but physically important and general
form of dissipative function with gain saturation [3,7,11]:
F (An) = An[γ(1 + |An|2)−1 − δ], and the active region
corresponds to amplitudes satisfying F (|A|) > 0 (high-
lighted part of the horizontal axis in Figs.1, 3). Here pa-
rameters δ, γ > 0 describe linear losses and gain respec-
tively. We will assume that in the low-power limit the
system is active, so that γ > δ, distinguishing the case
considered here from other studies of DCS [3–9,11]. This
implies that in the absence of a holding beam (P = 0)
the trivial solution An ≡ 0 of Eq.(1) is unstable.
To specify the order of coefficients entering Eq.(1)

we took parameters for GaAs semiconductor lasers [2]
with the linear refractive index n0 = 3.55, saturation
intensity I0 = 108W/cm2, the Kerr coefficient n2 =
−2 × 10−13 cm2/W, the linear gain 1.5cm−1 and the
loss 0.5 cm−1. Assuming the cross-section of resonators
being 5µm2, we get that the unit of the normalized am-
plitude corresponds to the power 0.5mW. The round trip
frequency is Ω ∼ 10 10s−1. With this in mind we set all
dimensionless coefficients ∆, δ, α and γ in order of unity,
which appears to be achievable in experiments. For the
visualization of our results we opt for the following par-
ticular values: ∆ = 3.5, δ = 0.4, γ = 1.7, α = −0.2, yield-
ing |A| < 1.8 as active region. For distances ∼ 1÷ 10µm
the coupling strength varies in a large interval, so we can
use a relatively weak realistic coupling C = 0.15, a value
which for the chosen set of parameters is slightly below
the upper existence limit for the solutions found below.
The analysis of DCS in the system (1) starts from

the identification of stable homogeneous (H) states that
serve as a background for localized solutions [3–7]: set-
ting An = A (or C = 0) in Eq.(1) one finds the so-called
response curve P (|A|), plotted in Fig.1(a) for the pa-
rameters chosen. The static state is stable when Eq.(1)
linearized above it has no time-growing solutions. When
two stable H-states coexist (thick solid parts marked H1
and H2 in Fig.1(a)), solitons for nonzero C can gener-
ally be found as connections between these states [7]:
the H1-H2-H1 connection for bright solitons, where the
core intensity exceeds the background, or the H2-H1-
H2 connection for grey solitons with a ’dent’ in the H2
‘substrate’. In our case, as for passive systems [3–7], such
stable DCS exist in a certain interval within the bistabil-
ity region of H-states caused by the Kerr nonlinearity;
an example of a stable bright soliton is given in Fig.2
(upper right pane). The major difference of H-states in
the active case is the instability of the low-amplitude
part of the H1-branch, so that, in contrast to passive
systems [3–7], DCS formed by such H-states connections
cannot be stable at low P values.
Now we turn to another possible background for the

formation of DCS – inhomogeneous periodic static state

(we label it as an I-state). In general, infinitely many

Fig. 1. (Color online.) Response curves for (a) homo-
geneous (H) and (b) 2-site periodic (I) solutions, with
stable regions highlighted by thick solid lines. (a) P (|A|)
for H-solutions, with stable lower (H1) and higher (H2)
states. (b) P (|Amax|) and P (|Amin|) for the I-solution;
the direction of ‘evolution’ from the curve coalescence
points (marked by ||) is identified with arrows. Regions
of H-H and H-I bistability are marked on the P -axes; the
active region (F (|A|) > 0) is highlighted on the |A|-axes.

extended solutions with inhomogeneous patterning can
be found but here, to demonstrate the main features in-
troduced by coupling to the I-states, we deal with the
simplest family having a 2-site period. Setting in Eq.(1)
An, An+2, . . . = Amax, and An+1, An+3, . . . = Amin,
Amax 6= Amin, we solve the system for these two complex
fields. The results are given in Fig.1(b) in the form of two
(equivalent) response curves: P (|Amax|) and P (|Amin|)
(stable regions are marked with a thick solid line). The
I-background is discrete and does not exist in the contin-
uum limit C → ∞. One can observe that the regions of
stability for H-states and I-state partially overlap. This
means that one can compose new families of localized so-
lutions in the form of a fragment of the I-state embedded
in a stable H-background (or vice versa). In addition, the
I-state can be stable below the region of H-bistability, i.e.
for parameters where one cannot have stable DCS in the
form of H-states connections. Thus, in this region the
only stable DCS represent connections of type H2-I.
In Figs. 2 and 3 we show examples of the new type

of DCS corresponding to H-I connections found in our
model. We present them on snaking diagrams where each
point corresponds to a particular DCS. The bright/grey
DCS are characterized by the maximal/minimal ampli-
tude of the soliton so the snakes corresponding to each
soliton type are plotted on the curves P (|Amax|), (Fig.2,
corresponding to H1-I-H1 connection) and P (|Amin|),
(Fig.3, H2-I-H2 connection). These DCS are discrete, i.e.
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Fig. 2. (Color online.) Left pane: Snaking diagram for
bright DCS corresponding to H1-I-H1 connection (sta-
ble regions are highlighted). The inset shows a magni-
fied part of the snake. Right panes show particular field
distributions for DCS: the top pane shows a stable DCS
corresponding to the H1-H2-H1 connection (P = 4.3),
the two lower panes show the distributions for the stable
DCS corresponding to H1-I-H1. The latter correspond to
the points marked • ’1’, ’2’ on the snake.

Fig. 3. (Color online.) Snaking diagram P (|Amin|) for
the grey DCS corresponding to the H2-I-H2 connection.
The inset shows the particular distribution of stable DCS
referring to the point marked as � ’3’.

they can exist only up to a finite value of coupling. They
have a nonuniform central excited part corresponding
to a fragment of the I-state embedded into either H1
or H2 background. Importantly, the grey DCS of this
type can be stable in the region where no solitons rep-
resenting the connections of H-states can be stable (see
Fig.3), so this stability is achieved solely by the discrete
diffraction. The solitons outside the stable regions typi-
cally display nonoscillatory exponential growth of small
perturbations.
We note that, to the best of our knowledge, the DCS

with H-I connections of the type found above have not
been studied in works on (passive) coupled cavity sys-
tems, although a solution involving connections with a
more complicated I-state was mentioned in [7]. Solutions
involving oscillatory patterns at the tails were discussed
in [8, 9]: in [8] DCS with oscillatory decaying tails were
found, while in [9] the staggering low-amplitude plane-
wave served as a background I-state for a grey DCS.
Notably, both these types of DCS could be stable out
of the H-bistability region. Our solutions have the stag-

gering in the middle and come from the anticontinuous
limit with generally large staggering oscillations. By de-
creasing γ we checked that stable analogues of the H-I
type DCS with a 2-periodic I-state in fact do exist also
for passive systems.
Our findings have several important physical conse-

quences. First, we have demonstrated that in active cav-
ities, aside from ’traditional’ DCS representing connec-
tions between H-states, there can be stable solitary solu-
tions with a lower power corresponding to the H-I con-
nections, Figs.2, 3. Thus exerting an address beam for
the nucleation of a ’pixel’ one can end up with an H-I
rather than an H-H soliton. In turn, the mobility charac-
teristics [9] of H-I solitons are likely to be different from
those of the well-studied H1-H2 solutions, and the con-
ditions for optical processing can significantly deviate
from those of the ’conventional’ H-H DCS. Second, by
adjusting the discrete diffraction (i.e. coupling) one can
gain stable solitary solutions in the region of parameters,
where no stable H1-H2 DCS can exist. Such stability con-
trol via a simple discrete diffraction management can be
used as an additional tool for light manipulation: one
can control not only the stability, but also the geometry
of DCS providing more versatility for optical processing.
Finally, the only stable type of DCS suitable for ’pixels’
manipulations in active cavities at low P values (or for
a relatively high gain) corresponds to the H-I solitons.
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