1,543 research outputs found

    Mode stability in delta Scuti stars: linear analysis versus observations in open clusters

    Full text link
    A comparison between linear stability analysis and observations of pulsation modes in five delta Scuti stars, belonging to the same cluster, is presented. The study is based on the work by Michel et al. (1999), in which such a comparison was performed for a representative set of model solutions obtained independently for each individual star considered. In this paper we revisit the work by Michel et al. (1999) following, however, a new approach which consists in the search for a single, complete, and coherent solution for all the selected stars, in order to constrain and test the assumed physics describing these objects. To do so, refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations are used. In addition, a crude attempt is made to study the role of rotation on the prediction of mode instabilities.The present results are found to be comparable with those reported by Michel et al. (1999). Within the temperature range log T_eff = 3.87-3.88 agreement between observations and model computations of unstable modes is restricted to values for the mixing-length parameter alpha_nl less or equal to 1.50. This indicates that for these stars a smaller value for alpha_nl is required than suggested from a calibrated solar model. We stress the point that the linear stability analysis used in this work still assumes stellar models without rotation and that further developments are required for a proper description of the interaction between rotation and pulsation dynamics.Comment: 8 pages, 4 figures, 3 tables. (MNRAS, in press

    Asteroseismology of delta Scuti stars in open clusters: Praesepe

    Full text link
    The present paper provides a general overview of the asteroseismic potential of delta Scuti stars in clusters, in particular focusing on convection diagnostics. We give a summarise of the last results obtained by the authors for the Praesepe cluster of which five delta Scuti stars are analysed. In that work, linear analysis is confronted with observations, using refined descriptions for the effects of rotation on the determination of the global stellar parameters and on the adiabatic oscillation frequency computations. A single, complete, and coherent solution for all the selected stars is found, which lead the authors to find important restrictions to the convection description for a certain range of effective temperatures. Furthermore, the method used allowed to give an estimate of the global parameters of the selected stars and constrain the cluster.Comment: 6 pages, 1 figure. Accepted for publication in Communications in Asteroseismolog

    Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting

    Full text link
    Our poor understanding of the boundaries of convective cores generates large uncertainties on the extent of these cores and thus on stellar ages. Our aim is to use asteroseismology to consistently measure the extent of convective cores in a sample of main-sequence stars whose masses lie around the mass-limit for having a convective core. We first test and validate a seismic diagnostic that was proposed to probe in a model-dependent way the extent of convective cores using the so-called r010r_{010} ratios, which are built with l=0l=0 and l=1l=1 modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets to optimize the efficiency of this diagnostic. For this purpose, we compute grids of stellar models with both the CESAM2k and MESA evolution codes, where the extensions of convective cores are modeled either by an instantaneous mixing or as a diffusion process. Among the selected targets, we are able to unambiguously detect convective cores in eight stars and we obtain seismic measurements of the extent of the mixed core in these targets with a good agreement between the CESAM2k and MESA codes. By performing optimizations using the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of extra-mixing beyond the core that is required in CESAM2k to reproduce seismic observations for these eight stars and we show that this can be used to propose a calibration of this quantity. This calibration depends on the prescription chosen for the extra-mixing, but we find that it should be valid also for the code MESA, provided the same prescription is used. This study constitutes a first step towards the calibration of the extension of convective cores in low-mass stars, which will help reduce the uncertainties on the ages of these stars.Comment: 27 pages, 15 figures, accepted in A&

    Bostonia. Volume 3

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    The origin and prevention of pandemics.

    Get PDF
    Despite the fact that most emerging diseases stem from the transmission of pathogenic agents from animals to humans, the factors that mediate this process are still ill defined. What is known, however, is that the interface between humans and animals is of paramount importance in the process. This review will discuss the importance of the human-animal interface to the disease emergence process. We also provide an overview of factors that are believed to contribute to the origin and global spread of emerging infectious diseases and offer suggestions that may serve as future prevention strategies, such as social mobilization, public health education, behavioral change, and communication strategies. Because there exists no comprehensive global surveillance system to monitor zoonotic disease emergence, the intervention measures discussed herein may prove effective temporary alternatives

    Integrating organizational research–Individual, team, organizational and multilevel perspectives

    Get PDF
    Organizations are multilevel social systems (Hedberg, Nystrom, & Starbuck, 1976; Kesler & Kates, 2015) where (1) diverse employees are assigned to various jobs, embedded in multiple dyadic relationships, and expected to play diverse team roles; (2) functional and/or cross-functional teams integrate individual efforts and develop intra- and inter-group dynamics; and (3) multiple departments and business processes nested within or spanning across organizational boundaries deliver value through mutual interaction. Whereas the managerial priority in the globally digitalized world is to execute competitive strategic initiatives and achieve challenging business goals by vigilantly managing and continuously improving dynamic interactions between organizational system levels, the majority of scholars still populate disciplinary, specialized micro- (social psychology, organizational behavior, and organizational psychology), meso- (business process management and project management) or macro- (strategic management, organizational theory and design, and engineering/systems management) research camps (e.g., Hitt, Beamish, Jackson, & Mathieu, 2007; Molloy, Ployhart, & Wright, 2011)..

    The TSS-1 mission: Results on satellite charging

    Get PDF
    In the present paper we first give a short account of the mission TSS-1 flown on the Shuttle sts-46 in August 1992 and its basic electrical configurations. We then show some results obtained from the experiment RETE on board the satellite which are relevant for the issue of satellite charging

    Disentangling discrepancies between stellar evolution theory and sub-solar mass stars. The influence of the mixing length parameter for the UV Psc binary

    Full text link
    Serious discrepancies have recently been observed between predictions of stellar evolution models in the 0.7-1.1 M_sun mass range and accurately measured properties of binary stars with components in this mass range. We study one of these objects, the eclipsing binary UV Piscium, which is particularly interesting because Popper (1997) derived age estimates for each component which differed by more than a factor of two. In an attempt to solve this significant discrepancy (a difference in age of 11 Gyr), we compute a large grid of stellar evolution models with the CESAM code for each component. By fixing the masses to their accurately determined values (relative error smaller than 1% for both stars), we consider a wide range of possible metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34) uncorrelated to Z. In addition, the mixing length parameter alpha_MLT is left as another free parameter. We obtain a best fit in the T_eff-radius diagram for a common chemical composition (Z, Y)=(0.012, 0.31), but a different MLT parameter alpha_MLT_A = 0.95+-0.12(statistical)+0.30(systematic) and alpha_MLT_B = 0.65+-0.07(stat)+0.10(syst). The apparent age discrepancy found by Popper (1997) disappears with this solution, the components being coeval to within 1%. This suggests that fixing alpha_MLT to its solar value (~1.6), a common hypothesis assumed in most stellar evolutionary models, may not be correct. Secondly, since alpha_MLT is smaller for the less massive component, this suggests that the MLT parameter may decrease with stellar mass, showing yet another shortcoming of the mixing length theory to explain stellar convection. This trend needs further confirmation with other binary stars with accurate data.Comment: 8 pages, accepted for publication in Astronomy & Astrophysic
    • …
    corecore