Disentangling discrepancies between stellar evolution theory and
sub-solar mass stars. The influence of the mixing length parameter for the UV
Psc binary
Serious discrepancies have recently been observed between predictions of
stellar evolution models in the 0.7-1.1 M_sun mass range and accurately
measured properties of binary stars with components in this mass range. We
study one of these objects, the eclipsing binary UV Piscium, which is
particularly interesting because Popper (1997) derived age estimates for each
component which differed by more than a factor of two. In an attempt to solve
this significant discrepancy (a difference in age of 11 Gyr), we compute a
large grid of stellar evolution models with the CESAM code for each component.
By fixing the masses to their accurately determined values (relative error
smaller than 1% for both stars), we consider a wide range of possible
metallicities Z (0.01 to 0.05), and Helium content Y (0.25 to 0.34)
uncorrelated to Z. In addition, the mixing length parameter alpha_MLT is left
as another free parameter. We obtain a best fit in the T_eff-radius diagram for
a common chemical composition (Z, Y)=(0.012, 0.31), but a different MLT
parameter alpha_MLT_A = 0.95+-0.12(statistical)+0.30(systematic) and
alpha_MLT_B = 0.65+-0.07(stat)+0.10(syst). The apparent age discrepancy found
by Popper (1997) disappears with this solution, the components being coeval to
within 1%. This suggests that fixing alpha_MLT to its solar value (~1.6), a
common hypothesis assumed in most stellar evolutionary models, may not be
correct. Secondly, since alpha_MLT is smaller for the less massive component,
this suggests that the MLT parameter may decrease with stellar mass, showing
yet another shortcoming of the mixing length theory to explain stellar
convection. This trend needs further confirmation with other binary stars with
accurate data.Comment: 8 pages, accepted for publication in Astronomy & Astrophysic