1,370 research outputs found
Collisional perturbation of radio-frequency E1 transitions in an atomic beam of dysprosium
We have studied collisional perturbations of radio-frequency (rf)
electric-dipole (E1) transitions between the nearly degenerate opposite-parity
levels in atomic dysprosium (Dy) in the presence of 10 to 80 Torr of
H, N, He, Ar, Ne, Kr, and Xe. Collisional broadening and
shift of the resonance, as well as the attenuation of the signal amplitude are
observed to be proportional to the foreign-gas density with the exception of
H and Ne, for which no shifts were observed. Corresponding rates and cross
sections are presented. In addition, rates and cross sections for O are
extracted from measurements using air as foreign gas. The primary motivation
for this study is the need for accurate determination of the shift rates, which
are needed in a laboratory search for the temporal variation of the
fine-structure constant [A. T. Nguyen, D. Budker, S. K. Lamoreaux, and J. R.
Torgerson, Phys. Rev. A \textbf{69}, 22105 (2004)].Comment: 11 pages, 8 figure
TITAN's Digital RFQ Ion Beam Cooler and Buncher, Operation and Performance
We present a description of the Radio Frequency Quadrupole (RFQ) ion trap
built as part of the TITAN facility. It consists of a gas-filled, segmented,
linear Paul trap and is the first stage of the TITAN setup with the purpose of
cooling and bunching radioactive ion beams delivered from ISAC-TRIUMF. This is
the first such device to be driven digitally, i.e., using a high voltage
(), wide bandwidth ()
square-wave as compared to the typical sinusoidal wave form. Results from the
commissioning of the device as well as systematic studies with stable and
radioactive ions are presented including efficiency measurements with stable
Cs and radioactive Cs. A novel and unique mode of
operation of this device is also demonstrated where the cooled ion bunches are
extracted in reverse mode, i.e., in the same direction as previously injected.Comment: 34 pages, 17 figure
Elucidation of the anomalous A = 9 isospin quartet behaviour
Recent high-precision mass measurements of Li and Be, performed
with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light
of state-of-the-art shell model calculations. We find an explanation for the
anomalous Isobaric Mass Multiplet Equation (IMME) behaviour for the two = 9
quartets. The presence of a cubic = 6.3(17) keV term for the =
3/2 quartet and the vanishing cubic term for the excited =
1/2 multiplet depend upon the presence of a nearby = 1/2 state in
B and Be that induces isospin mixing. This is contrary to previous
hypotheses involving purely Coulomb and charge-dependent effects. = 1/2
states have been observed near the calculated energy, above the = 3/2
state. However an experimental confirmation of their is needed.Comment: 5 pages, 2 figure
Lin28A and Lin28B Inhibit let-7 MicroRNA Biogenesis by Distinct Mechanisms
SummaryLin28A and Lin28B selectively block the expression of let-7 microRNAs and function as oncogenes in a variety of human cancers. Lin28A recruits a TUTase (Zcchc11/TUT4) to let-7 precursors to block processing by Dicer in the cell cytoplasm. Here we find that unlike Lin28A, Lin28B represses let-7 processing through a Zcchc11-independent mechanism. Lin28B functions in the nucleus by sequestering primary let-7 transcripts and inhibiting their processing by the Microprocessor. The inhibitory effects of Zcchc11 depletion on the tumorigenic capacity and metastatic potential of human cancer cells and xenografts are restricted to Lin28A-expressing tumors. Furthermore, the majority of human colon and breast tumors analyzed exclusively express either Lin28A or Lin28B. Lin28A is expressed in HER2-overexpressing breast tumors, whereas Lin28B expression characterizes triple-negative breast tumors. Overall our results illuminate the distinct mechanisms by which Lin28A and Lin28B function and have implications for the development of new strategies for cancer therapy
Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat
Global warming can substantially affect the export of dissolved organic carbon (DOC) from peat-permafrost to aquatic systems. The direct degradability of such peat-derived DOC, however, is poorly constrained because previous permafrost thaw studies have mainly addressed mineral soil catchments or DOC pools that have already been processed in surface waters. We incubated peat cores from a palsa mire to compare an active layer and an experimentally thawed permafrost layer with regard to DOC composition and degradation potentials of pore water DOC. Our results show that DOC from the thawed permafrost layer had high initial degradation potentials compared with DOC from the active layer. In fact, the DOC that showed the highest bio- and photo-degradability, respectively, originated in the thawed permafrost layer. Our study sheds new light on the DOC composition of peat-permafrost directly upon thaw and suggests that past estimates of carbon-dioxide emissions from thawed peat permafrost may be biased as they have overlooked the initial mineralization potential of the exported DOC
- âŠ