117 research outputs found

    Entrepreneurial Human Capital, Complementary Assets, and Takeover Probability

    Get PDF
    Gaining access to technologies, competencies, and knowledge is observed as one of the major motives for corporate mergers and acquisitions. In this paper we show that a knowledge-based firm’s probability of being a takeover target is influenced by whether relevant specific human capital aimed for in acquisitions is directly accumulated within a specific firm or is bound to its founder or manager owner. We analyze the incentive effects of different arrangements of ownership in a firm’s assets in the spirit of the Grossman-Hart-Moore incomplete contracts theory of the firm. This approach highlights the organizational significance of ownership of complementary assets. In a small theoretical model we assume that the entrepreneur’s specific human capital, as measured by the patents they own, and the physical assets of their firm are productive only when used together. Our results show that it is not worthwhile for an acquirer to purchase the alienable assets of this firm due to weakened incentives for the initial owner. Regression analysis using a hand collected dataset of all German IPOs in the period from 1997 to 2006 subsequently provides empirical support for this prediction. This paper adds to previous research in that it puts empirical evidence to the Grossman-Hart-Moore framework of incomplete contracts or property rights respectively. Secondly, we show that relevant specific human capital that is accumulated by a firm’s founder or manager owner significantly decreases that firm’s probability of being a takeover target.ownership structure, property rights, mergers & acquisitions

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Consortium for the Study of Pregnancy Treatments (Co-OPT) : An international birth cohort to study the effects of antenatal corticosteroids

    Get PDF
    Acknowledgments We are grateful to the Co-OPT collaborators from Finland, Iceland, Israel, Nova Scotia, and Scotland, who have provided high-quality patient data, without which the Co-OPT ACS cohort would not have been possible. We acknowledge Public Health Scotland for providing us with a secure data analytical platform in which to undertake this research and are particularly grateful to Anna Schneider who has been the data controller for this project. Co-OPT collaborators: Karel Allegaert (Belgium), Jasper Been (Netherlands), David Burgner (Australia), Sohinee Bhattacharya (UK), Kate Duhig (UK), Kristjana Einarsdóttir (Iceland), John Fahey (Canada), Lani Florian (UK), Abigail Fraser (UK), Mika Gissler (Finland), Cynthia Gyamfi-Bannerman (USA), Bo Jacobsson (Sweden), Eyal Krispin (Israel), Stefan Kuhle (Canada), Marius Lahti-Pulkkinen (Finland), Jessica Miller (Australia), Ben Mol (Australia), Sarah Murray (UK), Jane Norman (UK), Lars Henning Pedersen (Denmark), Richard Riley (UK), Devender Roberts (UK), Ewoud Schuit (Netherlands), Aziz Sheikh (UK), Ting Shi (UK), Joshua Vogel (Australia), Rachael Wood (UK), John Wright (UK), Helga Zoega (Australia). Funding Information: The Co-OPT ACS study is funded through a Wellcome Trust Clinical Career Development Fellowship grant (Funding Reference number 209560/Z/17) awarded to Sarah J Stock. The funders had no role in study design, data collection, data analysis, decision to publish, or preparation of the manuscript. The Sponsor of the study is the University of Edinburgh (www.ed.ac. uk), Sponsor reference AC19119. For the purpose of open access, the author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.Peer reviewedPublisher PD

    Achievement of therapeutic antibiotic exposures using Bayesian dosing software in critically unwell children and adults with sepsis

    Get PDF
    PURPOSE: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes

    Consortium for the Study of Pregnancy Treatments (Co-OPT): An international birth cohort to study the effects of antenatal corticosteroids

    Get PDF
    BACKGROUND: Antenatal corticosteroids (ACS) are widely prescribed to improve outcomes following preterm birth. Significant knowledge gaps surround their safety, long-term effects, optimal timing and dosage. Almost half of women given ACS give birth outside the "therapeutic window" and have not delivered over 7 days later. Overtreatment with ACS is a concern, as evidence accumulates of risks of unnecessary ACS exposure. METHODS: The Consortium for the Study of Pregnancy Treatments (Co-OPT) was established to address research questions surrounding safety of medications in pregnancy. We created an international birth cohort containing information on ACS exposure and pregnancy and neonatal outcomes by combining data from four national/provincial birth registers and one hospital database, and follow-up through linked population-level data from death registers and electronic health records. RESULTS AND DISCUSSION: The Co-OPT ACS cohort contains 2.28 million pregnancies and babies, born in Finland, Iceland, Israel, Canada and Scotland, between 1990 and 2019. Births from 22 to 45 weeks' gestation were included; 92.9% were at term (≥ 37 completed weeks). 3.6% of babies were exposed to ACS (67.0% and 77.9% of singleton and multiple births before 34 weeks, respectively). Rates of ACS exposure increased across the study period. Of all ACS-exposed babies, 26.8% were born at term. Longitudinal childhood data were available for 1.64 million live births. Follow-up includes diagnoses of a range of physical and mental disorders from the Finnish Hospital Register, diagnoses of mental, behavioural, and neurodevelopmental disorders from the Icelandic Patient Registers, and preschool reviews from the Scottish Child Health Surveillance Programme. The Co-OPT ACS cohort is the largest international birth cohort to date with data on ACS exposure and maternal, perinatal and childhood outcomes. Its large scale will enable assessment of important rare outcomes such as perinatal mortality, and comprehensive evaluation of the short- and long-term safety and efficacy of ACS

    A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium

    Get PDF
    BACKGROUND: Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. METHODOLOGY AND RESULTS: Analysis of a Lingulodinium transcriptome obtained by Illumina sequencing of mRNA shows several different copies of each of the four core histones as well as a suite of histone modifying enzymes and histone chaperone proteins. Phylogenetic analysis shows one of each Lingulodinium histone copies belongs to the dinoflagellate clade while the second is more divergent and does not share a common ancestor. All histone mRNAs are in low abundance (roughly 25 times lower than higher plants) and transcript levels do not vary over the cell cycle. We also tested Lingulodinium extracts for histone proteins using immunoblotting and LC-MS/MS, but were unable to confirm histone expression at the protein level. CONCLUSION: We show that all core histone sequences are present in the Lingulodinium transcriptome. The conservation of these sequences, even though histone protein accumulation remains below currently detectable levels, strongly suggests dinoflagellates possess histones

    High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures

    Get PDF
    This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures

    Apoptotic cell-based therapies against transplant rejection: role of recipient’s dendritic cells

    Get PDF
    One of the ultimate goals in transplantation is to develop novel therapeutic methods for induction of donor-specific tolerance to reduce the side effects caused by the generalized immunosuppression associated to the currently used pharmacologic regimens. Interaction or phagocytosis of cells in early apoptosis exerts potent anti-inflammatory and immunosuppressive effects on antigen (Ag)-presenting cells (APC) like dendritic cells (DC) and macrophages. This observation led to the idea that apoptotic cell-based therapies could be employed to deliver donor-Ag in combination with regulatory signals to recipient’s APC as therapeutic approach to restrain the anti-donor response. This review describes the multiple mechanisms by which apoptotic cells down-modulate the immuno-stimulatory and pro-inflammatory functions of DC and macrophages, and the role of the interaction between apoptotic cells and APC in self-tolerance and in apoptotic cell-based therapies to prevent/treat allograft rejection and graft-versus-host disease in murine experimental systems and in humans. It also explores the role that in vivo-generated apoptotic cells could have in the beneficial effects of extracorporeal photopheresis, donor-specific transfusion, and tolerogenic DC-based therapies in transplantation
    corecore