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Abstract 

Purpose: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, 

antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility 

of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to 

effective antibiotic exposure in children and adults with sepsis in ICU.

Methods: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. 

In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic 

dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to 

patients in Phase 1 (a pre–post-design).

Results: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all 

patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, 

respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic 

commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction 

in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were 

less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 

0.01–0.05, p < 0.01). There was no difference observed in in-hospital mortality.

Conclusions: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated 

further in trials to establish its impact on clinical outcomes.

Keywords: Dosing software, Antibiotics, Sepsis, Pharmacokinetic–pharmacodynamic

*Correspondence:  a.irwin@uq.edu.au 
1 UQ Centre for Clinical Research, The University of Queensland, Brisbane, 

QLD, Australia

Full author information is available at the end of the article

Adam D. Irwin and Jason A. Roberts contributed equally to this 

manuscript.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00134-024-07353-3&domain=pdf
http://orcid.org/0000-0001-8974-6789


Introduction

Sepsis is a significant contributor to mortality in critically 

ill children and adults [1, 2]. Prompt recognition and 

treatment, including the administration of effective 

antibiotics, improves outcomes and reduces mortality [3, 

4]. There are several barriers to the early recognition and 

treatment of sepsis. Its clinical presentation is often non-

specific, while the processes of pathogen identification 

and susceptibility testing using conventional culture-

based methods are time-consuming [5]. Even when 

pathogen and susceptibility are known, patients in the 

intensive care unit (ICU) are exposed to subtherapeutic 

antibiotic exposures as a consequence of the 

pathophysiological changes that occur in critical illness, 

and the interventions they require [6, 7]. Overcoming 

these barriers and reducing the time to therapeutic 

antibiotic exposures is intended to lead to reductions in 

mortality and length of stay.

Consensus guidelines for the management of sepsis and 

septic shock in critically ill adults recommend strategies 

to optimise antibiotic dosing [8]. These include the use 

of therapeutic drug monitoring and dosing software 

to personalise dosing and increase the probability of 

achieving therapeutic drug exposures, while minimising 

toxicity [9]. Therapeutic drug monitoring (TDM) 

improves the probability of target attainment of beta 

lactam antibiotics [10]. Dosing software may complement 

TDM by assisting clinicians to identify a dosing strategy 

most likely to achieve target exposures. The place of 

TDM was articulated in a recent Position paper endorsed 

by specialist international societies which recommended 

it as standard of care for most antimicrobials in ICU 

[11], and was recommended for consideration in the 

2021 Surviving Sepsis Campaign guidelines [8]. Software 

using Bayesian statistics has embedded pharmacokinetic 

(PK) models that use patient and TDM data to estimate 

the drug’s PK in that patient and, therefore, develop a 

dosing regimen that is optimal for the individual patient 

at that point in time [12, 13]. A small number of studies 

have demonstrated improved clinical response, reduced 

antibiotic associated adverse reactions, and decreased 

length of hospital stay and treatment costs using dosing 

software for aminoglycosides and vancomycin [14–18].

We set out to determine the feasibility and clinical 

impact of a personalised approach to antibiotic dosing 

using the Bayesian dosing software Individually Designed 

Optimum Dosing Strategies (ID-ODS™), in critically ill 

children and adults with sepsis in the ICU.

Methods

Study design

The DIRECT (Optimising Treatment Outcomes for 

Children and Adults Through Rapid Genome Sequencing 

of Sepsis Pathogens) study was a prospective, non-

randomised multicentre interventional trial combining 

rapid pathogen sequencing with dosing software to 

optimise antibiotic exposures in children and adults 

with sepsis in ICU [19]. We have separately reported the 

results of direct metagenomic sequencing from blood 

culture broth which indicate its feasibility and potential 

to reduce time to antibiotic susceptibility prediction [20].

The study was conducted at the following ICUs 

in Brisbane, Australia: Royal Brisbane and Women’s 

Hospital, The Prince Charles Hospital, Princess 

Alexandra Hospital and Queensland Children’s 

Hospital. The study protocol was approved by the 

Children’s Health Queensland Human Research 

Ethics Committee (HREC/19/CHQ/55177) and local 

governance approval was obtained from participating 

sites. The study protocol was prospectively registered 

with the Australian New Zealand Clinical Trials Registry 

(ACTRN12620001122943) and is reported in line with 

the CONSORT extension to pilot and feasibility trials 

[21] with the recommended adaptions [22].

Participants

Inpatients in participating ICUs were considered 

eligible for inclusion if they developed sepsis or septic 

shock within 24  h of screening and were receiving 

antibiotic treatment with one of the following antibiotics: 

cefotaxime, ceftazidime, flucloxacillin, meropenem, 

piperacillin–tazobactam or vancomycin. The full 

inclusion and exclusion criteria are documented in 

supplementary Table 1.

Procedures

The methods for pathogen identification and 

antimicrobial susceptibility were those validated for 

clinical use at Pathology Queensland. Blood cultures were 

performed using the BACT/Alert Virtuo System. Species 

identification was performed using matrix-assisted laser 

desorption/ionization time-of-flight (MALDI-TOF, 

Vitek MS, bioMérieux) on pure cultured isolates, with 

antimicrobial susceptibility testing (AST) performed 

by Vitek 2 automated broth microdilution (N-246 AST 

cards; bioMérieux), using EUCAST clinical breakpoints 

applicable at the time [23]. For certain species (e.g., 

Streptococcus pyogenes), AST was undertaken using disk 

Take‑home message: 

This multi-centre study evaluated the feasibility of Bayesian dosing 
software to improve antibiotic exposures in children and adults with 
sepsis in intensive care unit. Dosing software reduced the time to 
achieve effective antibiotic concentrations and may improve clinical 
outcomes in critically ill patients with sepsis.



diffusion according to EUCAST methods [24], or by 

Etest (bioMérieux) where appropriate (e.g., penicillin for 

Streptococcus pneumoniae).

In Phase 1, antibiotic dosing was solely determined 

by the treating team. In Phase 2, participants who 

failed to achieve target antibiotic exposures within the 

first 24  h of therapy underwent dose optimisation by 

clinicians trained to use the Bayesian dosing software 

ID-ODS™. ID-ODS™ incorporates both paediatric and 

adult PK antibiotic models developed in critically ill 

patients, and appropriate models were used in each 

patient group. Treating clinicians applied software-

guided dosing recommendations at their discretion. 

Target exposures for the beta-lactam antibiotics were 

unbound concentrations exceeding the minimum 

inhibitory concentration (MIC) of the pathogen (in 

blood culture-confirmed sepsis). These were either 

trough concentrations for beta-lactams administered as 

an intermittent infusion or steady-state concentrations 

for beta-lactams administered as a continuous infusion. 

In the setting of culture-negative sepsis and accounting 

for the most common local pathogens, the following 

EUCAST clinical breakpoint MICs were used (www. 

eucast. org/ clini cal_ break points/):

• cefotaxime—2 mg/L

• ceftazidime—8 mg/L

• flucloxacillin—2 mg/L

• piperacillin/Tazobactam—16 mg/L

• meropenem—2 mg/L

For vancomycin, target exposures were defined as 

either trough concentrations between 15 mg/L and 

20  mg/L for intermittent infusions, or steady-state 

concentrations between 20 mg/L and 25  mg/L for 

continuous infusions. ID-ODS™ allows a target range to 

be inputted and selects the lowest dosing option needed 

to achieve a trough concentration between the range. 

These target exposures were selected based on a recently 

published position paper describing target exposures for 

various antimicrobials in critically ill patients [11]. All 

antibiotic concentrations were collected every 24 h after 

antibiotic commencement for up to 96 h.

In both phases of the study, the time that target 

exposures were achieved was identified through a 

posteriori ID-ODS™ antibiotic exposure simulations as 

has previously been described [25]. Patients who did not 

achieve target concentrations by the end of their study 

enrolment were assigned a time to target of 96 h for data 

analysis purposes.

Outcomes

We compared study outcomes in participants before 

(Phase 1) and after (Phase 2) the study intervention. The 

primary outcome was time to target antibiotic exposures.

Economic evaluation of the intervention

A cost–benefit approach was undertaken. The cost of 

the intervention was estimated using a combination of 

bottom-up and top-down costing. The cost components 

of the intervention include: the cost of antibiotic assay 

of patient blood samples (therapeutic drug monitoring), 

the clinician (pharmacist) cost of service based on 

simulation runs, obtained from Queensland Health wage 

rates for health practitioners (HP5, Level 1 https:// www. 

health. qld. gov. au/ hrpol icies/ wage- rates/ health- pract 

ition ers), the cost of dosing simulation with ID-ODS™, 

and the cost of the server line [A. Farkas, personal 

communication, February 6, 2023]. The cost of dosing 

simulation and server line were adjusted to 2022 AU$ 

following the guidelines of the Campbell and Cochrane 

Economics Methods Group (CCEGM) and the Evidence 

for Policy and Practice Information and Co-ordinating 

Centre (EPPI-Centre) https:// eppi. ioe. ac. uk/ costc onver 

sion/ defau lt. aspx. The benefit of the intervention was 

measured as the cost savings resulting from reduced 

length of ICU stay due to ID-ODS™ for patients in Phase 

2. The cost of ICU stay per day was estimated from the 

Australian ICU registry report [26], and adjusted to 2022 

value using 2022/2014 Health Price Index of Australia 

https:// www. abs. gov. au/ stati stics/ econo my/ price- index 

es- and- infla tion/ consu mer- price- index- austr alia/ latest- 

relea se. Where the benefit–cost ratio (BCR) is > 1, it 

indicates that the benefits of the intervention outweigh 

the costs and vice versa.

Statistics

Characteristics of study participants and time to target 

antibiotic exposures are presented as medians with 

interquartile ranges (IQR). Time taken to target antibiotic 

exposure was compared between patients in Phase 1 

and 2 using a Mann–Whitney U test. Kaplan–Meier 

plots were used to assess the likelihood of achieving 

target exposures at 96 h. A two-sided p value < 0.05 was 

considered statistically significant. Statistical analyses 

were performed using GraphPadPrism version 9.

Results

Screening and enrolment occurred from March 2020 

to Feb 2021 for Phase 1 and March 2021 to December 

2021 for Phase 2. A total of 201 patients were recruited 

into the trial. 156 patients were included in the analysis 

(108 patients with 123 antibiotic courses in Phase 1 and 

48 patients with 52 antibiotic courses in Phase 2, see 

Fig.  1). A total of 321 antibiotic concentrations were 

collected in Phase 1 and 154 in Phase 2. The baseline 

characteristics of participants in each phase are reported 

in Table 1. Trough concentrations could not be accurately 

simulated in 6 patients (five in Phase 1 and one in Phase 

http://www.eucast.org/clinical_breakpoints/
http://www.eucast.org/clinical_breakpoints/
https://www.health.qld.gov.au/hrpolicies/wage-rates/health-practitioners
https://www.health.qld.gov.au/hrpolicies/wage-rates/health-practitioners
https://www.health.qld.gov.au/hrpolicies/wage-rates/health-practitioners
https://eppi.ioe.ac.uk/costconversion/default.aspx
https://eppi.ioe.ac.uk/costconversion/default.aspx
https://www.abs.gov.au/statistics/economy/price-indexes-and-inflation/consumer-price-index-australia/latest-release
https://www.abs.gov.au/statistics/economy/price-indexes-and-inflation/consumer-price-index-australia/latest-release
https://www.abs.gov.au/statistics/economy/price-indexes-and-inflation/consumer-price-index-australia/latest-release


2) as their antibiotic measurements were too far removed 

from the accepted range of possible concentrations set 

by ID-ODS™ based on the underlying  PK model and 

patient covariate data. A bacterial pathogen was isolated 

from blood cultures of 48 patients (36/108 in Phase 1 and 

12/48 in Phase 2).

No statistically significant difference in the primary 

outcome of median time taken to achieve target 

exposures was observed (8.7  h [interquartile range 

(IQR) 5.9–96] vs 14.3 h [IQR 7.3–32.0] in Phase 1 and 

Phase 2, respectively, p = 0.45, see Fig.  2A). However, 

in participants who did not achieve target exposures 

within the first 24  h of antibiotic therapy (n = 36 

patients with 41 antibiotic courses in Phase 1, and 

n = 18 patients with 20 antibiotic courses in Phase 2), 

the use of ID-ODS™ was associated with a reduction in 

median time to target antibiotic exposure (96 h [IQR 

96–96] vs 36.4 h [IQR 29.8–42.6]  in Phase 1 and Phase 

2, respectively, p < 0.01, see Fig.  2B). These findings 

were consistent in children and adults separately. A 

breakdown of adult and paediatric data is provided in 

the supplement.

Participants in Phase 2 who failed to achieve target 

antibiotic exposures within the first 24  h were much 

less likely to exhibit subtherapeutic antibiotic exposures 

at 96 h following the dosing intervention (hazard ratio 

(HR) 0.02, 95% confidence interval (CI) 0.01–0.05, see 

Fig.  3A). Again, this finding was consistent in both 

adults and children (HR in adults 0.08, 95% CI 0.01–

0.55). The breakdown of adult and paediatric data is 

provided in supplementary Fig.  3B, C. There was no 

difference observed in in-hospital mortality (assessed 

up to 60 days) following the introduction of ID-ODS™ 

(11/108 vs 5/48 in Phase 1 and Phase 2, respectively; 

see supplementary Fig. 4 and supplementary Table 2).

Dosing Software recommendations

ID-ODS™ was used to generate dosing recommendations 

for 20 antibiotic courses (in 18 participants). All 

suggestions were accepted by the treating teams. 

Seventeen patients achieved target exposures after one 

dose change (85%), with one requiring two dose changes. 

Two patients did not achieve target antibiotic exposures 

after one dose change but were discharged from the ICU 

before a second recommendation could be made. The 

most common software recommendation was to extend 

the infusion time (8/20) (keeping the total daily antibiotic 

dose the same), or to convert from an intermittent 

infusion to a continuous infusion (4/20). A total daily 

dose increase was recommended in the remaining 8 

patients. There were no adverse events associated with 

the dosing software recommendations.

Cost and benefit of the intervention

The cost of the intervention per patient was estimated 

to be $71.13. The intervention was associated with 

a reduction in the length of ICU stay by 2.13  days, 

which translates to a potential benefit of $12,324.28 

(95% CI $9,520.93–$15,127.62) from averted ICU stay 

(supplementary Table 3).

Discussion

In this prospective, multi-centre trial of critically ill 

children and adults with sepsis, we demonstrated 

that it is feasible to employ Bayesian dosing software 

(ID-ODS™) in the ICU. Use of dosing software in patients 

who did not achieve target antibiotic exposures within 

24  h of commencing antibiotics was associated with a 

reduction in the time taken to achieve target exposures. 

This finding was consistent in both children and adults 

separately.

Emerging evidence supports the potential for TDM 

in combination with dosing software to attain target 

antibiotic exposures and improve clinical outcomes. 

In the TARGET clinical trial, the use of TDM-guided 

antibiotic therapy increased the proportion of patients 

that exceeded the minimum target exposure from 65% 

to 77%, though the trial failed to confirm any improved 

clinical outcomes. The study was limited by a marginal 

increase in minimum target exposure attainment which 

may have been amenable to improvement through 

the addition of dosing software [27]. The recently 

published DOLPHIN trial is the first multicentre 

randomised controlled trial (RCT) to measure the 

impact of dosing software on clinical outcomes. Use 

of the model informed precision dosing (MIPD) 

software, InsightRX™, in combination with TDM 

failed to reduce ICU length of stay. There are several 

things to consider when interpreting the results of 

Fig. 1 CONSORT diagram of trial profile



this important trial. Firstly, the use of MIPD software 

was delayed by up to 36  h. A conservative dosing 

strategy was used, limiting dose changes proposed by 

the MIPD software and restricting the maximum daily 

dose allowed (for example, a maximum cumulative 

dose of 16  g–2  g of piperacillin–tazobactam within a 

24-h period). Participants were included in the analysis 

even if the infectious pathogen was not susceptible to 

the study drug. Finally, some of the models used in the 

MIPD software may have been unable to accurately 

predict target exposures as the models used total 

antibiotic concentrations while the investigators used 

unbound concentrations for TDM measurements 

[28]. Commentators have highlighted the absence of 

external validation of some of the models used by the 

software [29], while a recent multicentre evaluation of 

24 popPK piperacillin models illustrated substantial 

inter-model variability leading to highly variable 

predictive performance [30]. However, meta-analyses 

of individualised antimicrobial dose optimisation 

confirm the achievement of higher rates of target 

exposures and have suggested reductions in treatment 

Table 1 Baseline characteristics of recruited patients

APACHE  Acute Physiology and Chronic Health Evaluation (adults only), CNS   central nervous system, MRSA methicillin resistant Staphylococcus aureus, 

PELOD   Paediatric Logistic Organ Dysfunction (children only), pSOFA pediatric Sequential Organ Failure Assessment. Results are presented as median (interquartile 

range) or number (percentage). aSome patients were prescribed 2 study antibiotics on enrolment. bAeromonas hydrophilia, Bacillus cereus, Prevotella spp., Proteus 

mirabilis cHaemophilus influenzae, Candida albicans, Proteus mirabilis, Enterococcus faecalis

Characteristics Phase 1 (n = 108) Phase 2 (n = 48)

Adult/Paediatric 69/39 (63.9/36.1) 25/23 (52.1/47.9)

Male sex 70 (64.8) 36 (75)

APACHE III (adults) 65 (50–77) 65 (51.5–76.3)

PELOD 2 (children) 4 (2–9) 7 (4–10)

pSOFA (children) 6 (4–9) 8 (5–10)

Number receiving vasoactive medications 47 (43.5) 28 (58.3)

Vasoactive Inotropic score 12 (8–18) 8 (12–24)

Site of Infection

Lung 38 (35.2) 15 (31.3)

CNS 4 (3.7) 2 (4.2)

Intra-abdominal 3 (2.8) 0 (0)

Primary bloodstream 5 (4.6) 2 (4.2)

Skin and soft tissue 10 (9.3) 5 (10.4)

Urinary tract 7 (6.5) 2 (4.2)

Other 15 (13.9) 3 (6.3)

Source not apparent 26 (24.1) 19 (39.6)

Organisms in positive bacterial blood cultures 36 (33.3) 12 (25)

Escherichia coli 7 2

Enterobacter species 6 0

Staphylococcus aureus (Methicillin sensitive) 5 1

Staphylococcus aureus (Methicillin resistant) 1 1

Other Staphylococcus species 2 0

Streptococcus species 5 3

Klebsiella pneumoniae 3 0

Pseudomonas aeruginosa 3 1

Other 4b 4c

Study  Druga Total = 123 Total = 52

Piperacillin–Tazobactam 59 (48) 22 (42.3)

Meropenem 26 (21.1) 6 (11.5)

Cefotaxime 15 (12.2) 14 (26.9)

Vancomycin 18 (14.6) 9 (17.3)

Flucloxacillin 5 (4) 1 (1.9)

Ceftazidime 0 (0) 0 (0)



failure and adverse outcomes, such as nephrotoxicity 

[31, 32]. Practical barriers to dose optimisation 

include the time required to measure and report 

antibiotic concentrations in the laboratory. Innovative 

approaches such as wearable biosensors that provide 

rapid quantification of antibiotic concentrations, could 

reduce these delays and facilitate earlier TDM and 

dose optimisation [33]. More work is undoubtedly 

necessary to assess the benefit of the approach [34], and 

it is hoped that findings from our study provide further 

impetus to examine this important research question in 

the context of a suitably powered randomised clinical 

trial.

We observed a reduction in costs associated with 

the dosing software intervention, attributable to a 

reduction in LOS in patients in Phase 2. For every 

$1 spent to optimise treatment outcomes with the 

intervention, this translated into a potential cost saving 

of $173.27 (95% CI $133.86–$212.69). Our cost analysis 

assumed the cost of ICU each day was the same by 

applying the average cost of ICU per day from the 

Australia ICU registry data, whereas the actual cost 

per day may vary [35]. Our inability to collect patient-

level cost data during the study led to the use of an 

average national estimate to value the cost of ICU stay 

in this study. The estimated cost saving is indicative 

only and will vary from country to country depending 

on patient case-mix and local healthcare costs. There 

was unmeasured variation between the two phases of 

the study which we did not adjust for (including factors 

unrelated to infection), and so our economic evaluation 

should be interpreted with caution.

Strengths

Our study presents a real-world evaluation of Bayesian 

dosing software to optimise antibiotic exposures in 

four ICUs, including a children’s ICU. We prospectively 

recruited more than 200 critically ill patients with sepsis. 

The dosing software intervention was successfully 

implemented by clinical pharmacists trained in its 

use, and dosing decisions made at the discretion of the 

treating clinical team. All dosing recommendations were 

accepted by the treating clinicians, and while this may 

reflect the expertise in the present academic ICU setting, 

our multi-centre design provides assurance that the use 

of dosing software can be feasibly applied in a range of 

ICU settings.

We elected to include both children and adults in our 

trial for several reasons. Children are often excluded 

from clinical trials, including antimicrobial clinical trials, 

resulting in persisting knowledge gaps [36]. The study 

investigators share considerable clinical and research 

expertise in paediatric and adult critical care, infectious 

diseases, and antimicrobial optimisation, and considered 

that as the trial was designed to test feasibility and 

measure endpoints that were suitable for both adults and 

children, there was a valuable opportunity to explore the 

feasibility of the intervention in the children’s ICU. The 

inclusion of clinical endpoints such as mortality or length 

of hospital stay would have made this more challenging 

[37]. The software-guided dosing recommendations 

for children were all derived from paediatric 

pharmacokinetic models and the successful adoption of 

the dosing software, including the demonstration of its 

impact in children, are valuable learnings. Our results 

were consistent across the adult and paediatric cohorts, 

and we believe our findings are broadly applicable to both 

adults and children critically unwell with sepsis.

Fig. 2 Time taken to achieve target antibiotic exposures for 

all patients (A) and for patients who failed to achieve target 

concentrations within 24 h of antibiotic commencement (B). Results 

are depicted using median values with interquartile ranges

Fig. 3 Kaplan–Meier plot for estimates of subtherapeutic 

concentrations in patients who do not achieve target concentrations 

within 24 h



Limitations

The limitations of our pre–post-quasi-experimental 

design are acknowledged. In addition, although dosing 

software was associated with a significant reduction 

in time to target exposures, we acknowledge the small 

number of participants who did not achieve target 

concentrations and accept there is residual uncertainty 

over the finding. The largely effective nature of empiric 

dosing in this study may contribute to the similar 

clinical outcomes observed, noting that the study was 

not powered to assess these. Our findings suggest, 

however, that dosing software (in this case ID-ODS™) is 

a suitable dosing intervention that can achieve high rates 

of target attainment and should be evaluated in trials 

for its impact on clinical outcomes. Approximately 30% 

of participants had culture-confirmed sepsis, which is 

slightly lower than other ICU sepsis studies [2]. Though 

this is broadly representative of sepsis in high-income 

ICUs, the inclusion of patients with non-bacterial sepsis 

may reduce the impact of the intervention. Advanced 

infection diagnostics, particularly the clinical application 

of pathogen metagenomics [20, 38] could improve the 

selection of patients and better target antibiotic therapy, 

thereby enhancing the impact of TDM and dosing 

interventions.

As our study performed convenience sampling for 

TDM within each 24-h interval, we had to perform a 

posteriori pharmacokinetic modelling using ID-ODS™ 

to estimate the time target exposures were achieved. 

This method has previously demonstrated low bias at 

predicting actual antibiotic exposures [39, 40]. Finally, 

we were unable to include data from 6 patients as their 

clinical characteristics were too far removed from the 

underlying PK model in ID-ODS™.

Conclusion

In a multi-centre study of critically ill children and adults 

with sepsis, the introduction of Bayesian dosing software 

(ID-ODS™) reduced time to target antibiotic exposures 

in those who failed to achieve target exposure in the first 

24 h. The impact of this observation on clinical outcomes 

in sepsis should be evaluated further in the context of a 

randomised clinical trial. Work to improve the speed of 

pathogen identification that can be rapidly linked to dose 

optimisation remains a priority.
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