485 research outputs found

    Conservation Laws in Cellular Automata

    Full text link
    If X is a discrete abelian group and B a finite set, then a cellular automaton (CA) is a continuous map F:B^X-->B^X that commutes with all X-shifts. If g is a real-valued function on B, then, for any b in B^X, we define G(b) to be the sum over all x in X of g(b_x) (if finite). We say g is `conserved' by F if G is constant under the action of F. We characterize such `conservation laws' in several ways, deriving both theoretical consequences and practical tests, and provide a method for constructing all one-dimensional CA exhibiting a given conservation law.Comment: 19 pages, LaTeX 2E with one (1) Encapsulated PostScript figure. To appear in Nonlinearity. (v2) minor changes/corrections; new references added to bibliograph

    Neutrino emission via the plasma process in a magnetized plasma

    Get PDF
    Neutrino emission via the plasma process using the vertex formalism for QED in a strongly magnetized plasma is considered. A new vertex function is introduced to include the axial vector part of the weak interaction. Our results are compared with previous calculations, and the effect of the axial vector coupling on neutrino emission is discussed. The contribution from the axial vector coupling can be of the same order as or greater than the vector vector coupling under certain plasma conditions.Comment: 20 pages, 3 figure

    Strong UA(1)U_A(1) breaking in radiative η\eta decays

    Full text link
    We study the \egg, \egm and \epg decays using an extended three-flavor Nambu-Jona-Lasinio model that includes the 't~Hooft instanton induced interaction. We find that the η\eta-meson mass, the \egg, \egm and \epg decay widths are in good agreement with the experimental values when the UA(1)U_{A}(1) breaking is strong and the flavor SU(3)SU(3) singlet-octet mixing angle θ\theta is about zero. The calculated ηγγ\eta \gamma \gamma^\ast transition form factor has somewhat weaker dependence on the squared four-momentum of the virtual photon. The effects of the UA(1)U_A(1) anomaly on the scalar quark contents in the nucleon, the ΣπN\Sigma_{\pi N} and ΣKN\Sigma_{KN} terms and the baryon number one and two systems are also studied.Comment: 41 pages, LaTeX, 17 eps figures, uses epsf.sty and cite.st

    Understanding the proton's spin structure

    Get PDF
    We discuss the tremendous progress that has been towards an understanding of how the spin of the proton is distributed on its quark and gluon constituents. This is a problem that began in earnest twenty years ago with the discovery of the proton ``spin crisis'' by the European Muon Collaboration. The discoveries prompted by that original work have given us unprecedented insight into the amount of spin carried by polarized gluons and the orbital angular momentum of the quarks.Comment: Review article for J. Phys. G, 1 figure, 22 page

    The gravitational wave radiation of pulsating white dwarfs revisited: the case of BPM 37093 and PG 1159-035

    Get PDF
    We compute the emission of gravitational radiation from pulsating white dwarfs. This is done by using an up-to-date stellar evolutionary code coupled with a state-of-the-art pulsational code. The emission of gravitational waves is computed for a standard 0.6 solar masses white dwarf with a liquid carbon-oxygen core and a hydrogen-rich envelope, for a massive DA white dwarf with a partially crystallized core for which various l=2 modes have been observed (BPM 37093) and for PG 1159-035, the prototype of the GW Vir class of variable stars, for which several quadrupole modes have been observed as well. We find that these stars do not radiate sizeable amounts of gravitational waves through their observed pulsation g-modes, in line with previous studies. We also explore the possibility of detecting gravitational waves radiated by the f-mode and the p-modes. We find that in this case the gravitational wave signal is very large and, hence, the modes decay very rapidly. We also discuss the possible implications of our calculations for the detection of gravitational waves from pulsating white dwarfs within the framework of future space-borne interferometers like LISA.Comment: 11 pages, 6 figures. Accepted for publication in A&

    Determinants of change in subtropical tree diameter growth with ontogenetic stage

    Full text link
    We evaluated the degree to which relative growth rate (RGR) of saplings and large trees is related to seven functional traits that describe physiological behavior and soil environmental factors related to topography and fertility for 57 subtropical tree species in Dinghushan, China. The mean values of functional traits and soil environmental factors for each species that were related to RGR varied with ontogenetic stage. Sapling RGR showed greater relationships with functional traits than large-tree RGR, whereas large-tree RGR was more associated with soil environment than was sapling RGR. The strongest single predictors of RGR were wood density for saplings and slope aspect for large trees. The stepwise regression model for large trees accounted for a larger proportion of variability (R 2 = 0.95) in RGR than the model for saplings (R 2 = 0.55). Functional diversity analysis revealed that the process of habitat filtering likely contributes to the substantial changes in regulation of RGR as communities transition from saplings to large trees. © 2014 Springer-Verlag Berlin Heidelberg

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore