132 research outputs found

    Testing turbulent closure models with convection simulations

    Full text link
    We compare simple analytical closure models of homogeneous turbulent Boussinesq convection for stellar applications with three-dimensional simulations. We use simple analytical closure models to compute the fluxes of angular momentum and heat as a function of rotation rate measured by the Taylor number. We also investigate cases with varying angles between the angular velocity and gravity vectors, corresponding to locating the computational domain at different latitudes ranging from the pole to the equator of the star. We perform three-dimensional numerical simulations in the same parameter regimes for comparison. The free parameters appearing in the closure models are calibrated by two fitting methods using simulation data. Unique determination of the closure parameters is possible only in the non-rotating case or when the system is placed at the pole. In the other cases the fit procedures yield somewhat differing results. The quality of the closure is tested by substituting the resulting coefficients back into the closure model and comparing with the simulation results. To eliminate the possibilities that the results obtained depend on the aspect ratio of the simulation domain or suffer from too small Rayleigh numbers we performed runs varying these parameters. The simulation data for the Reynolds stress and heat fluxes broadly agree with previous compressible simulations. The closure works fairly well with slow and fast rotation but its quality degrades for intermediate rotation rates. We find that the closure parameters depend not only on rotation rate but also on latitude. The weak dependence on Rayleigh number and the aspect ratio of the domain indicates that our results are generally validComment: 21 pages, 9 figures, submitted to Astron. Nach

    Angular momentum transport in convectively unstable shear flows

    Full text link
    Angular momentum transport owing to hydrodynamic turbulent convection is studied using local three dimensional numerical simulations employing the shearing box approximation. We determine the turbulent viscosity from non-rotating runs over a range of values of the shear parameter and use a simple analytical model in order to extract the non-diffusive contribution (Lambda-effect) to the stress in runs where rotation is included. Our results suggest that the turbulent viscosity is of the order of the mixing length estimate and weakly affected by rotation. The Lambda-effect is non-zero and a factor of 2-4 smaller than the turbulent viscosity in the slow rotation regime. We demonstrate that for Keplerian shear, the angular momentum transport can change sign and be outward when the rotation period is greater than the turnover time, i.e. when the Coriolis number is below unity. This result seems to be relatively independent of the value of the Rayleigh number.Comment: 10 pages, 12 figures, published version. Version with higher resolution figures can be found at http://www.helsinki.fi/~kapyla/publ.htm

    The alpha-effect in rotating convection: a comparison of numerical simulations

    Full text link
    Numerical simulations are an important tool in furthering our understanding of turbulent dynamo action, a process that occurs in a vast range of astrophysical bodies. It is important in all computational work that comparisons are made between different codes and, if non-trivial differences arise, that these are explained. Kapyla et al (2010: MNRAS 402, 1458) describe an attempt to reproduce the results of Hughes & Proctor (2009: PRL 102, 044501) and, by employing a different methodology, they arrive at very different conclusions concerning the mean electromotive force and the generation of large-scale fields. Here we describe why the simulations of Kapyla et al (2010) are simply not suitable for a meaningful comparison, since they solve different equations, at different parameter values and with different boundary conditions. Furthermore we describe why the interpretation of Kapyla et al (2010) of the calculation of the alpha-effect is inappropriate and argue that the generation of large-scale magnetic fields by turbulent convection remains a problematic issue.Comment: Submitted to MNRAS. 5 pages, 3 figure

    Reynolds stresses from hydrodynamic turbulence with shear and rotation

    Full text link
    To study the Reynolds stresses which describe turbulent momentum transport from turbulence affected by large-scale shear and rotation. Three-dimensional numerical simulations are used to study turbulent transport under the influences of large-scale shear and rotation in homogeneous, isotropically forced turbulence. We study three cases: one with only shear, and two others where in addition to shear, rotation is present. These cases differ by the angle (0 or 90\degr) the rotation vector makes with respect to the z-direction. Two subsets of runs are performed with both values of \theta where either rotation or shear is kept constant. When only shear is present, the off-diagonal stress can be described by turbulent viscosity whereas if the system also rotates, nondiffusive contributions (\Lambda-effect) to the stress can arise. Comparison of the direct simulations are made with analytical results from a simple closure model. We find that the turbulent viscosity is of the order of the first order smoothing result in the parameter regime studied and that for sufficiently large Reynolds numbers the Strouhal number, describing the ratio of correlation to turnover times, is roughly 1.5. This is consistent with the closure model based on the minimal tau-approximation which produces a reasonable fit to the simulation data for similar Strouhal numbers. In the cases where rotation is present, separating the diffusive and nondiffusive components of the stress turns out to be challenging but taking the results at face value, we can obtain nondiffusive contributions of the order of 0.1 times the turbulent viscosity. We also find that the simple closure model is able to reproduce most of the qualitative features of the numerical results provided that the Strouhal number is of the order of unity.Comment: 19 pages, 12 figures, published versio

    Turbulent transport in hydromagnetic flows

    Full text link
    The predictive power of mean-field theory is emphasized by comparing theory with simulations under controlled conditions. The recently developed test-field method is used to extract turbulent transport coefficients both in kinematic as well as nonlinear and quasi-kinematic cases. A striking example of the quasi-kinematic method is provided by magnetic buoyancy-driven flows that produce an alpha effect and turbulent diffusion.Comment: 17 pages, 6 figures, topical issue of Physica Scripta on turbulent mixing and beyon

    Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence

    Full text link
    The turbulent magnetic diffusivity tensor is determined in the presence of rotation or shear. The question is addressed whether dynamo action from the shear-current effect can explain large-scale magnetic field generation found in simulations with shear. For this purpose a set of evolution equations for the response to imposed test fields is solved with turbulent and mean motions calculated from the momentum and continuity equations. The corresponding results for the electromotive force are used to calculate turbulent transport coefficients. The diagonal components of the turbulent magnetic diffusivity tensor are found to be very close together, but their values increase slightly with increasing shear and decrease with increasing rotation rate. In the presence of shear, the sign of the two off-diagonal components of the turbulent magnetic diffusion tensor is the same and opposite to the sign of the shear. This implies that dynamo action from the shear--current effect is impossible, except perhaps for high magnetic Reynolds numbers. However, even though there is no alpha effect on the average, the components of the alpha tensor display Gaussian fluctuations around zero. These fluctuations are strong enough to drive an incoherent alpha--shear dynamo. The incoherent shear--current effect, on the other hand, is found to be subdominant.Comment: 12 pages, 13 figures, improved version, accepted by Ap

    Simulations of a Magnetic Fluctuation Driven Large Scale Dynamo and Comparison with a Two-scale Model

    Full text link
    Models of large scale (magnetohydrodynamic) dynamos (LSD) which couple large scale field growth to total magnetic helicity evolution best predict the saturation of LSDs seen in simulations. For the simplest so called "{\alpha}2" LSDs in periodic boxes, the electromotive force driving LSD growth depends on the difference between the time-integrated kinetic and current helicity associated with fluctuations. When the system is helically kinetically forced (KF), the growth of the large scale helical field is accompanied by growth of small scale magnetic (and current) helicity which ultimately quench the LSD. Here, using both simulations and theory, we study the complementary magnetically forced(MF) case in which the system is forced with an electric field that supplies magnetic helicity. For this MF case, the kinetic helicity becomes the back-reactor that saturates the LSD. Simulations of both MF and KF cases can be approximately modeled with the same equations of magnetic helicity evolution, but with complementary initial conditions. A key difference between KF and MF cases is that the helical large scale field in the MF case grows with the same sign of injected magnetic helicity, whereas the large and small scale magnetic helicities grow with opposite sign for the KF case. The MF case can arise even when the thermal pressure is approximately smaller than the magnetic pressure, and requires only that helical small scale magnetic fluctuations dominate helical velocity fluctuations in LSD driving. We suggest that LSDs in accretion discs and Babcock models of the solar dynamo are actually MF LSDs.Comment: 12 pages, 34 figure

    The preference and costs of sleeping under light at night in forest and urban great tits

    Get PDF
    Artificial light at night (ALAN) is an increasing phenomenon associated with worldwide urbanization. In birds, broad-spectrum white ALAN can have disruptive effects on activity patterns, metabolism, stress response and immune function. There has been growing research on whether the use of alternative light spectra can reduce these negative effects, but surprisingly, there has been no study to determine which light spectrum birds prefer. To test such a preference, we gave urban and forest great tits (Parus major) the choice where to roost using pairwise combinations of darkness, white light or green dim light at night (1.5 lux). Birds preferred to sleep under artificial light instead of darkness, and green was preferred over white light. In a subsequent experiment, we investigated the consequence of sleeping under a particular light condition, and measured birds' daily activity levels, daily energy expenditure (DEE), oxalic acid as a biomarker for sleep debt and cognitive abilities. White light affected activity patterns more than green light. Moreover, there was an origin-dependent response to spectral composition: in urban birds, the total daily activity and night activity did not differ between white and green light, while forest birds were more active under white than green light. We also found that individuals who slept under white and green light had higher DEE. However, there were no differences in oxalic acid levels or cognitive abilities between light treatments. Thus, we argue that in naive birds that had never encountered light at night, white light might disrupt circadian rhythms more than green light. However, it is possible that the negative effects of ALAN on sleep and cognition might be observed only under intensities higher than 1.5 lux. These results suggest that reducing the intensity of light pollution as well as tuning the spectrum towards long wavelengths may considerably reduce its impact
    corecore