120 research outputs found

    Expansion of CD4+CD25+ helper T cells without regulatory function in smoking and COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells along with enhanced intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface.</p> <p>Method</p> <p>Regulatory T cells were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers.</p> <p>Results</p> <p>In smokers with normal lung function, the expression of CD25<sup>+</sup>CD4<sup>+ </sup>was increased, whereas the proportions of FoxP3<sup>+ </sup>and CD127<sup>+ </sup>were unchanged compared to never-smokers. Among CD4<sup>+ </sup>cells expressing high levels of CD25, the proportion of FoxP3<sup>+ </sup>cells was decreased and the percentage of CD127<sup>+ </sup>was increased in smokers with normal lung function. CD4<sup>+</sup>CD25<sup>+ </sup>cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers.</p> <p>Conclusion</p> <p>The reduction of FoxP3 expression in BALF from smokers with normal lung function indicates that the increase in CD25 expression is not associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25<sup>+ </sup>helper T-cell population in smokers and stable COPD. Therefore, we suggest a smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development.</p

    Allergic rhinitis in northern vietnam: increased risk of urban living according to a large population survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about prevalence and risk factors of allergic rhinitis and chronic nasal symptoms among adults in Vietnam. We aimed to estimate the prevalence, risk factor patterns and co-morbidities of allergic rhinitis and chronic nasal symptoms in one urban and one rural area in northern Vietnam.</p> <p>Methods</p> <p>A cross-sectional questionnaire survey was conducted from August 2007 to January 2008 in urban Hoankiem and rural Bavi in Hanoi among adults aged 21-70 years. Of 7008 randomly selected subjects, 91.7% participated in Bavi and 70.3% in Hoankiem.</p> <p>Results</p> <p>Allergic rhinitis ever or chronic nasal symptoms were reported by 50.2%. The prevalence of allergic rhinitis ever was considerably higher in Hoankiem compared to Bavi, 29.6% vs 10.0% (p < 0.001). Allergic rhinitis ever and chronic nasal symptoms were both significantly associated with asthma and respiratory symptoms, respectively (p < 0.001). Exposure to gas, dust or fumes at work was significantly associated with allergic rhinitis ever, OR 1.57 (95% CI 1.34 - 1.84), nasal blocking, OR 1.90 (95% CI 1.68 - 2.15) and runny nose, OR 1.32 (95% CI 1.17 - 1.49), while somewhat surprisingly no association with smoking was found. Female sex was a significant risk factor for both nasal blocking and runny nose.</p> <p>Conclusions</p> <p>Allergic rhinitis ever was considerably more common in the urban area. Nasal blocking and runny nose was each reported by about one third of the studied sample with no major urban-rural difference. Further, exposure to air pollution at work was significantly associated with allergic rhinitis ever, nasal blocking and runny nose.</p

    A rare missense mutation in CHRNA4 associates with smoking behavior and its consequences

    Get PDF
    Using Icelandic whole-genome sequence data and an imputation approach we searched for rare sequence variants in CHRNA4 and tested them for association with nicotine dependence. We show that carriers of a rare missense variant (allele frequency = 0.24%) within CHRNA4, encoding an R336C substitution, have greater risk of nicotine addiction than non-carriers as assessed by the Fagerstrom Test for Nicotine Dependence (P= 1.2 × 10−4). The variant also confers risk of several serious smoking-related diseases previously shown to be associated with the D398N substitution in CHRNA5. We observed odds ratios (ORs) of 1.7–2.3 for lung cancer(LC;P= 4.0 × 10−4), chronic obstructive pulmonary disease (COPD;P= 9.3 × 10−4), peripheral artery disease (PAD;P= 0.090) and abdominal aortic aneurysms (AAAs; P= 0.12), and the variant associates strongly with the early-onset forms of LC (OR = 4.49,P= 2.2 × 10−4), COPD (OR = 3.22,P= 2.9 × 10−4), PAD (OR = 3.47,P= 9.2 × 10−3) and AAA (OR = 6.44, P= 6.3 × 10−3). Joint analysis of the four smoking-related diseases reveals significant association (P= 6.8 × 10−5), particularly for early-onset cases (P=2.1 × 10−7). Our results are in agreement with functional studies showing that the human α4β2 isoform of the channel containing R336C has less sensitivity for its agonists than the wild-type form following nicotine incubation

    Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Smoking is a known cause of the outcomes COPD, chronic bronchitis (CB) and emphysema, but no previous systematic review exists. We summarize evidence for various smoking indices.</p> <p>Methods</p> <p>Based on MEDLINE searches and other sources we obtained papers published to 2006 describing epidemiological studies relating incidence or prevalence of these outcomes to smoking. Studies in children or adolescents, or in populations at high respiratory disease risk or with co-existing diseases were excluded. Study-specific data were extracted on design, exposures and outcomes considered, and confounder adjustment. For each outcome RRs/ORs and 95% CIs were extracted for ever, current and ex smoking and various dose response indices, and meta-analyses and meta-regressions conducted to determine how relationships were modified by various study and RR characteristics.</p> <p>Results</p> <p>Of 218 studies identified, 133 provide data for COPD, 101 for CB and 28 for emphysema. RR estimates are markedly heterogeneous. Based on random-effects meta-analyses of most-adjusted RR/ORs, estimates are elevated for ever smoking (COPD 2.89, CI 2.63-3.17, n = 129 RRs; CB 2.69, 2.50-2.90, n = 114; emphysema 4.51, 3.38-6.02, n = 28), current smoking (COPD 3.51, 3.08-3.99; CB 3.41, 3.13-3.72; emphysema 4.87, 2.83-8.41) and ex smoking (COPD 2.35, 2.11-2.63; CB 1.63, 1.50-1.78; emphysema 3.52, 2.51-4.94). For COPD, RRs are higher for males, for studies conducted in North America, for cigarette smoking rather than any product smoking, and where the unexposed base is never smoking any product, and are markedly lower when asthma is included in the COPD definition. Variations by sex, continent, smoking product and unexposed group are in the same direction for CB, but less clearly demonstrated. For all outcomes RRs are higher when based on mortality, and for COPD are markedly lower when based on lung function. For all outcomes, risk increases with amount smoked and pack-years. Limited data show risk decreases with increasing starting age for COPD and CB and with increasing quitting duration for COPD. No clear relationship is seen with duration of smoking.</p> <p>Conclusions</p> <p>The results confirm and quantify the causal relationships with smoking.</p

    Mouse models to unravel the role of inhaled pollutants on allergic sensitization and airway inflammation

    Get PDF
    Air pollutant exposure has been linked to a rise in wheezing illnesses. Clinical data highlight that exposure to mainstream tobacco smoke (MS) and environmental tobacco smoke (ETS) as well as exposure to diesel exhaust particles (DEP) could promote allergic sensitization or aggravate symptoms of asthma, suggesting a role for these inhaled pollutants in the pathogenesis of asthma. Mouse models are a valuable tool to study the potential effects of these pollutants in the pathogenesis of asthma, with the opportunity to investigate their impact during processes leading to sensitization, acute inflammation and chronic disease. Mice allow us to perform mechanistic studies and to evaluate the importance of specific cell types in asthma pathogenesis. In this review, the major clinical effects of tobacco smoke and diesel exhaust exposure regarding to asthma development and progression are described. Clinical data are compared with findings from murine models of asthma and inhalable pollutant exposure. Moreover, the potential mechanisms by which both pollutants could aggravate asthma are discussed
    corecore