4,592 research outputs found

    Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications

    Full text link
    Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f\"ur Technologie (KIT), Institut de F\'isica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200Ω\Omega cm irradiated with neutrons showed a radiation hardness up to a fluence of 101510^{15}neq_{eq}cm−2^{-2} with a hit efficiency of about 99% and a noise occupancy lower than 10−610^{-6} hits in a LHC bunch crossing of 25ns at 150V

    Test beam measurement of the first prototype of the fast silicon pixel monolithic detector for the TT-PET project

    Get PDF
    The TT-PET collaboration is developing a PET scanner for small animals with 30 ps time-of-flight resolution and sub-millimetre 3D detection granularity. The sensitive element of the scanner is a monolithic silicon pixel detector based on state-of-the-art SiGe BiCMOS technology. The first ASIC prototype for the TT-PET was produced and tested in the laboratory and with minimum ionizing particles. The electronics exhibit an equivalent noise charge below 600 e- RMS and a pulse rise time of less than 2 ns, in accordance with the simulations. The pixels with a capacitance of 0.8 pF were measured to have a detection efficiency greater than 99% and, although in the absence of the post-processing, a time resolution of approximately 200 ps

    Prototyping of an HV-CMOS demonstrator for the High Luminosity-LHC upgrade

    Get PDF
    HV-CMOS sensors can offer important advantages in terms of material budget, granularity and cost for large area tracking systems in high energy physics experiments. This article presents the design and simulated results of an HV-CMOS pixel demonstrator for the High Luminosity-LHC. The pixel demonstrator has been designed in the 0.35 μm HV-CMOS process from ams AG and submitted for fabrication through an engineering run. To improve the response of the sensor, different wafers with moderate to high substrate resistivities are used to fabricate the design. The prototype consists of four large analog and standalone matrices with several pixel flavours, which are all compatible for readout with the FE-I4 ASIC. Details about the matrices and the pixel flavours are provided in this article

    Could the rise in mortality rates since 2015 be explained by changes in the number of delayed discharges of NHS patients?

    Get PDF
    Background: 2015 saw the largest annual spike in mortality rates in in England in almost 50 years. We examine whether these changes in mortality rates are associated with an indicator of poor functioning of health and social care – delay in hospital discharges. Methods: ONS monthly data of death counts and mortality rates for the period August 2010- March 2016 were compared to delays in discharges from NHS England data on transfers of care for acute and non-acute patients for England. Autoregressive Integrated Moving Average (ARIMA) regression models were used in analysis. Results: We estimate that each additional day an acute admission was late being discharged was associated with an increase in 0.394 deaths (95% CIs: 0.220-0.569). For each additional acute patient delayed being discharged, we found an increase of 7.322 deaths (95% CIs: 1.754-12.890). Findings for non-acute admissions were mixed. Conclusion: The increased prevalence of patients being delayed in discharge from hospital in 2015 was associated with increases in mortality, as many as 7,322 (CIs 1,754 to 12,890) deaths in a year in England. Our study provides evidence that a lower quality of performance of the NHS and adult social care as a result of austerity may be having an adverse impact on population health

    New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease

    Get PDF
    Spectral Counts approaches (SpCs) are largely employed for the comparison of protein expression profiles in label-free (LF) differential proteomics applications. Similarly, to other comparative methods, also SpCs based approaches require a normalization procedure before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normalization (CBN) methods that introduced a variable adjustment factor (f), related to the complexity of the sample, both in terms of total number of identified proteins (CBN(P)) and as total number of spectral counts (CBN(S)). Both these new methods were compared with the Normalized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs methods, they were employed for the comparative analysis of cortical protein extract from zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data available via ProteomeXchange with identifier PXD017471). LF data were also validated by western blot and MRM based experiments. On standard mixtures, both CBN methods showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs) in comparison to the other SpCs approaches. Overall, the CBN(P) method was demonstrated to be the most reliable and sensitive in detecting small differences in protein amounts when applied to biological samples

    Management of imatinib-resistant CML patients

    Get PDF
    Imatinib has had marked impact on outcomes in chronic myelogenous leukemia (CML) patients for all stages of the disease and is endorsed by international treatment guidelines as the first line option. Although imatinib is highly effective and well tolerated, the development of resistance represents a clinical challenge. Since the most frequently identified mechanism of acquired imatinib resistance is bcr-abl kinase domain point mutations, periodic hematologic, cytogenetic, and molecular monitoring is critical throughout imatinib therapy. Once cytogenetic remission is achieved, residual disease can be monitored by bcr-abl transcript levels as assayed by reverse transcription polymerase chain reaction (RT-PCR). Detection of bcr-abl mutants prior to and during imatinib therapy can aid in risk stratification as well as in determining therapeutic strategies. Thus, mutation screening is indicated in patients lacking or losing hematologic response. Moreover, search for mutations should also be performed when a 3-log reduction of bcr-abl transcripts is not achieved or there is a reproducible increase of transcript levels. In patients harboring mutations which confer imatinib resistance, novel second line tyrosine kinase inhibitors have demonstrated encouraging efficacy with low toxicity. Only the T315I bcr-abl mutant has proved totally resistant to all clinically available bcr-abl inhibitors. Strategies to further increase the rates of complete molecular remissions represent the next frontier in the targeted therapy of CML patients

    New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease

    Get PDF
    Spectral Counts approaches (SpCs) are largely employed for the comparison of protein expression profiles in label-free (LF) differential proteomics applications. Similarly, to other comparative methods, also SpCs based approaches require a normalization procedure before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normalization (CBN) methods that introduced a variable adjustment factor (f), related to the complexity of the sample, both in terms of total number of identified proteins (CBN(P)) and as total number of spectral counts (CBN(S)). Both these new methods were compared with the Normalized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs methods, they were employed for the comparative analysis of cortical protein extract from zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data available via ProteomeXchange with identifier PXD017471). LF data were also validated by western blot and MRM based experiments. On standard mixtures, both CBN methods showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs) in comparison to the other SpCs approaches. Overall, the CBN(P) method was demonstrated to be the most reliable and sensitive in detecting small differences in protein amounts when applied to biological samples

    Constitutive activation of the DNA damage response pathway as a novel therapeutic target in diffuse large B-cell lymphoma

    Get PDF
    The recent finding that MYC-driven cancers are sensitive to inhibition of the DNA damage response (DDR) pathway, prompted us to investigate the role of DDR pathway as therapeutic target in diffuse large B-cell lymphoma (DLBCL), which frequently overexpresses the MYC oncogene. In a preliminary immunohistochemical study conducted on 99 consecutive DLBCL patients, we found that about half of DLBCLs showed constitutive expression of the phosphorylated forms of checkpoint kinases (CHK) and CDC25c, markers of DDR activation, and of phosphorylated histone H2AX (?H2AX), marker of DNA damage and genomic instability. Constitutive ?H2AX expression correlated with c-MYC levels and DDR activation, and defined a subset of tumors characterised by poor outcome. Next, we used the CHK inhibitor PF-0477736 as a tool to investigate whether the inhibition of the DDR pathway might represent a novel therapeutic approach in DLBCL. Submicromolar concentrations of PF-0477736 hindered proliferation in DLBCL cell lines with activated DDR pathway. These results were fully recapitulated with a different CHK inhibitor (AZD-7762). Inhibition of checkpoint kinases induced rapid DNA damage accumulation and apoptosis in DLBCL cell lines and primary cells. These data suggest that pharmacologic inhibition of DDR through targeting of CHK kinases may represent a novel therapeutic strategy in DLBCL

    Tourism income and economic growth in Greece: Empirical evidence from their cyclical components

    Get PDF
    This paper examines the relationship between the cyclical components of Greek GDP and international tourism income for Greece for the period 1976–2004. Using spectral analysis the authors find that cyclical fluctuations of GDP have a length of about nine years and that international tourism income has a cycle of about seven years. The volatility of tourism income is more than eight times the volatility of the Greek GDP cycle. VAR analysis shows that the cyclical component of tourism income is significantly influencing the cyclical component of GDP in Greece. The findings support the tourism-led economic growth hypothesis and are of particular interest and importance to policy makers, financial analysts and investors dealing with the Greek tourism industry
    • …
    corecore