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Abstract

Spectral Counts approaches (SpCs) are largely employed for the comparison of protein

expression profiles in label-free (LF) differential proteomics applications. Similarly, to other

comparative methods, also SpCs based approaches require a normalization procedure

before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normaliza-

tion (CBN) methods that introduced a variable adjustment factor (f), related to the complexity

of the sample, both in terms of total number of identified proteins (CBN(P)) and as total num-

ber of spectral counts (CBN(S)). Both these new methods were compared with the Normal-

ized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using

standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs

methods, they were employed for the comparative analysis of cortical protein extract from

zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data

available via ProteomeXchange with identifier PXD017471). LF data were also validated by

western blot and MRM based experiments. On standard mixtures, both CBN methods

showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs)

in comparison to the other SpCs approaches. Overall, the CBN(P) method was demon-

strated to be the most reliable and sensitive in detecting small differences in protein amounts

when applied to biological samples.

Introduction

In recent years, Proteomics has gained centrality in Omics studies for basic and translational

applications, especially for diagnostic purposes and for targeted and/or personalized medicine

[1–3]. Differential proteomics approaches are attracting particular attention due to the
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possibility to compare protein expression profiles from multiple biological conditions, e. g.

wild type vs mutant or vs pharmacologically treated, etc [4,5].

Different methodologies have been developed to carry out the qualitative-quantitative anal-

ysis of the protein content in samples using both labeled and label-free approaches. The label-

ing based methods employed fluorescent (e. g. Difference in Gel Electrophoresis (DIGE)) [6,7]

or isotopic reagents (as for Isobaric Tag for Relative and Absolute Quantitation (iTRAQ), Sta-

ble Isotope Labeling with Amino acids in Cell culture (SILAC) and Tandem Mass Tagging

(TMT) [8–12]) to differently label the two or more proteomes under investigation. These strat-

egies provide higher levels of reproducibility because are based on the contemporaneous elec-

trophoretic separation and/or tandem mass spectrometry (MS/MS) analysis of the samples.

Despite these advantages, labeling procedures are time-consuming and very expensive for the

high cost of the labeling reagents [13].

More recently, Label-Free (LF) approaches have been introduced for quantification of

proteomic profiles by exploiting liquid chromatography coupled with tandem mass spectrom-

etry (LC-MS/MS) analyses [14–16]. These procedures [17–19] represented an effective solu-

tion to overcome these drawbacks due to their reduced costs and simplified sample

preparation. Nevertheless, longer analysis time and high-performance MS/MS instruments are

needed.

Label-Free quantification has emerged as a consequence of the great technical advances in

the development and design of high-resolution LC-MS/MS instruments [20], such as the Orbi-

trap mass analyzer [21]. This analytical approach relies on the measurement of two main

parameters, Extracted Ion Chromatogram (XIC) and Spectral Counts (SpCs) [19,22]. Mea-

surement of XIC is a MS1-based strategy in which the ion current associated with each peptide

ion is individually considered. The relative quantification of proteins can then be obtained by

evaluating the total current associated with all the peptides belonging to a specific protein in

the two conditions [23]. SpCs quantification is an MS/MS-based procedure. The number of

fragmentation events, (i.e. the spectral counts), measured for all the peptides belonging to the

same protein in each sample are summed up resulting in the relative quantification of the pro-

tein in the different conditions [24,25].

Both XIC and SpCs methods need massive use of tandem mass spectrometry, producing a

large amount of data that needs to be normalized, i.e. corrected for instrumental or uncontrol-

lable variations before becoming suitable for quantitative purposes. In particular, specifically,

designed bioinformatic tools are required to manage and process data, while appropriate nor-

malization methods have to be used [26,27].

Normalization procedure has been assessed in multiple ways by several authors [28,29]. In

general, XIC methods require steps of higher complexity such as isotopic patterns resolution,

feature detection, retention time alignment, etc. Therefore, well defined and automated pro-

cessing and normalization algorithms have been integrated into specifically designed software

packages, as for MaxQuant [30–32].

In SpCs methods, instead, fragmentation events are crucial for both protein identification

and quantification. Commonly, software workflows for SpCs quantification result in discrete,

unnormalized data with normalization left to the user [33,34]. Although XIC-based methods

show a greater accuracy and linear range, the access to the last generation high-resolution

instruments and/or computational processing for XIC data are often prohibitive, with the con-

sequence that SpC methods are still a valuable alternative for a large number of applications, as

demonstrated by recent literature [35–38].

Here we propose a new Complexity Based Normalization (CBN) method introducing new

adjustment factors in the SpC normalization formula related to the complexity of the analyzed

samples in terms of total identified proteins (CBN(P)) or spectral counts (CBN(S)). Both CBN
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methods are compared with the multiple label-free quantification modes based on the SpC

approaches, namely Ratio of Spectral Count (RSC) [33] and Normalized Spectra Abundance

Factor (NSAF) [39].

The new proposed normalization approach was optimized on standard protein mixtures

with different complexity, and then applied to the differential analysis of the proteome profiles

extracted from the brain cortex of zQ175 knock-in mice [40], an animal model of Huntington

Disease (HD), in comparison with the wild-type counterpart. The CBN(P) method was dem-

onstrated to be the most reliable and sensitive in detecting small differences in protein

amounts when applied to biological samples.

Materials and methods

Preparation of standard mixtures

Six standard tryptic peptide mixtures (Waters, Milford, Massachusetts, US) including Bovine

Hemoglobin Chain A (HBA, Uniprot ID P01966, B. Taurus), Bovine Hemoglobin Chain B

(HBB, P02070, B. Taurus), Bovine Serum Albumin (BSA, P02769, B. Taurus), yeast Enolase

(ENO, P00924, S. Cerevisiae), yeast Alcohol Dehydrogenase (ADH, P00330, S. Cerevisiae) and

rabbit Glycogen Phosphorylase (PYG, P00489, O. Cuniculus) were dissolved in 0.2% formic

acid (FA) and spiked into an E. Coli total tryptic digest (Waters, Milford, Massachusetts, US)

solution, so that final concentration of the digest reaches 67 ng/μL. In all mixtures obtained

and indicated with A-E letters, HBA, HBB, BSA and PYG were always added in a fixed

amount, while only ENO and ADH were added in variable amounts ranging from 1/25 to 5

times the fixed standards (i.e. 0.94–23.5ng/μl for ENO and 0.76–19 ng/μl for ADH). The

obtained standard mixtures have been employed for the optimization of mass spectrometry

analyses and for setting quantification methods.

The zQ175 mouse model

All protocols involving animals were carried out in accordance with institutional guidelines in

compliance with Italian law (D. Lgs no. 2014/26, implementation of the 2010/63/UE) and

authorization n.324/2015-PR issued May 6, 2015, by Ministry of Health. The Ethics Commit-

tee of the University of Milano approved studies in mice (Ethical Approval 74/13; Ethical

Approval 74/14). JAX stock number was B6J.129S1-Htt tm1Mfc /190ChdiJ. For biochemical

analyses, animals were euthanized by dislocation and all efforts were made to minimize suffer-

ing. Genotyping of the zQ175 (C57BL/6J) mouse colony was performed by PCR of genomic

DNA obtained from tail samples (Nucleo Spin Tissue, Macherey-Nagel, catalog 740952.250) at

weaning. CAG repeats of zQ175 mice were sized by using the following PCR primers: forward:

CATTCATTGCCTTGCTGCTAAG; reverse: CTGAAACGACTTGAGCGACTC. Cycling conditions

were 94˚C for 10 minutes, 30 cycles × (96˚C for 30 seconds, 57˚C for 30 seconds, 72˚C for 30

seconds), 72˚C for 7 minutes.

Preparation of total protein lysates from mouse cortical tissues

For proteomics and biochemical analyses, animals were euthanized by dislocation and the

brains were rapidly removed and the cerebral cortices were immediately excised from the

brain, frozen in liquid nitrogen and smashed. Specifically, cortical tissues from three symp-

tomatic homozygous zQ175 mutant and three wild type (WT) mice at 50 weeks of age were

used. The samples were then lysed by combining chemical and mechanical methods. Cortical

tissues were crushed and repeatedly pipetted in the lysis buffer (50 mM Tris-HCl pH 7.4, 150

mM NaCl, 0.1% v/v Sodium Dodecyl Sulphate (SDS), 1 mM Phenylmethylsulfonyl fluoride
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(PMSF), 1% v/v Nonidet P-40 (NP40), protease inhibitors EDTA-free), then passed ten times

each through a syringe. Following these mechanical processes, they were put on a stirring

wheel, (20 minutes at 4˚C), and then centrifuged, (16,100 x g, 30 minutes, 4˚C). After the lysis

procedure, supernatants from all samples were collected and quantified according to Bradford

protein assay and 50 μg from each were used for the Differential Proteomics experiment and

Western Blot assays.

SDS-PAGE and in situ hydrolysis

50μg from each sample were suspended in Laemmli buffer containing 100 mM dithiothreitol

(DTT), boiled for 10 minutes and loaded on a 20x20 cm 4% - 15% bis-acrylamide gradient gel.

After SDS-PAGE separation, the gel was stained with Coomassie Blue Brilliant and each lane

was excised in 29 slices by using the same cutting scheme. All gel slices were in situ hydrolyzed

as previously reported [41]. Finally, the peptide mixtures were vacuum-dried and resuspended

in 0.2% formic acid (FA) solution to be analyzed by LC-MS/MS.

LC-MS/MS analyses

Quantitative data were collected on an LTQ Orbitrap XL (ThermoScientific, Waltham, MA)

coupled to a nanoLC system (nanoEasy II). All peptide mixtures were analyzed using the same

chromatographic conditions, i.e. 3 microliters of each sample were fractionated onto a C18

capillary reverse-phase column (100 mm, 75 μm, 5 μm) working at 250 nl/min flow rate, using

a linear gradient of eluent B (0.2% formic acid in 95% acetonitrile) in A (0.2% formic acid and

2%acetonitrile in MilliQ water) from 5% to 40% in 80 minutes was run. MS/MS analyses were

performed using Data-Dependent Acquisition (DDA) mode: one MS scan (mass range from

400 to 1800 m/z) was followed by MS/MS scans of the five most abundant ions in each MS

scan, applying a dynamic exclusion window of 40 seconds. All samples were run in duplicates.

Protein identification and quantification

Raw data obtained from nanoLC-MS/MS were analyzed with MaxQuant 1.5.2 integrated with

the Andromeda search engine [42]. To that end, an appropriate Fasta file was generated by

downloading from UniProt and subsequently merging amino acid sequences of both standard

proteins and whole E. Coli proteome.

The selected parameters for protein identification were the following: minimum 2 peptides,

at least 1 unique; variable modifications allowed were methionine oxidation and pyrogluta-

mate formation on N-terminal glutamine; accuracy for the first search was set to 10 ppm, then

lowered to 5 ppm in the main search; 0.01 FDR was used, with a reverse database for decoy;

retention time alignment and second peptides search functions were allowed. Protein quantifi-

cation has been performed only using unique unmodified peptides.

As output, MaxQuant resulted in discrete spectral counts, which were then normalized by

using NSAF, RSC, or CBNs approaches.

As concerns data collected for the Differential Proteomics analysis on zQ175 mice, follow-

ing MaxQuant analysis data, each couple of technical duplicate was mediated for every protein,

obtaining a set of 6 data (3 for WT and 3 for zQ175). These values were employed for manual

normalization according to the above mentioned SpCs methods.

Western blot and densitometric analyses

Mice brains total protein extracts were separated by SDS-PAGE and then transferred onto

nitrocellulose membranes (Bio-rad, Hercules, California, US). Membranes were blocked with

PLOS ONE New label free methods for protein relative quantification

PLOS ONE | https://doi.org/10.1371/journal.pone.0238037 September 4, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0238037


5% non-fat milk and then incubated with the following antibodies: rabbit polyclonal anti-

hnRNPH (Abcam, ab154894), rabbit polyclonal anti-SERPIN B6 (Abcam, ab233229; Protein-

tech, 14962-1-AP), rabbit polyclonal anti-IRGM (Abcam, ab118569), rabbit polyclonal anti-

UQCRQ (Proteintech, 14975-1-AP), rabbit monoclonal anti-HOMER1 (Abcam, ab184955),

rabbit monoclonal anti-HTT (Cell Signalling Technology, mAb#5656), rabbit polyclonal anti-

OSBPL2 (Proteintech, 14751-1-AP), mouse monoclonal anti-β-Actin (Origene, TA811000)

and mouse monoclonal anti-Vinculin (Sigma-Aldrich, V9131). Membranes were incubated

with horseradish peroxidase-conjugated secondary antibody (1:5000 for mouse host antibodies

and 1:10000 for rabbit host antibodies) for 45 minutes at room temperature and the signals

were detected by enhanced chemiluminescence (ECL) detection system (Thermo Fisher Scien-

tific, Inc., Waltham, MA).

For densitometric analyses, the software Quantity One 4.6.8 (Bio-Rad, Hercules, California,

US) has been employed; all protein band intensities were normalized with the corresponding

β–actin signal, except HTT, whose intensities were normalized on vinculin signal.

Multiple-Reaction Monitoring (MRM) analyses

As additional validation method multiple-reaction monitoring (MRM) approach was

employed. 50 μg of cell lysates obtained as described above were digested by trypsin onto

S-Trap filters, according to the manufacturer protocol (Protifi, Huntington, NY). The three

biological replicates of zQ175 and wild-type mice were pooled respectively, and HTT, SERPIN

B6, HOMER1, OSPBL2, SAMM50, APO-A4, CAMK2A, STIP1, RIC8A, ATP2A2 peptide tran-

sitions were monitored with a Xevo-TQS mass spectrometer coupled to a nanoAcquity

UHPLC (Waters, Milford, MA, US) equipped with IonKey CHIP interface. Peptide mixtures

were separated on peptide BEH C18 130Å
´

, 1.7μm, 150 μm x 50mm, iKey by using a linear gra-

dient of eluent B (95% acetonitrile LC-MS grade (Sigma Aldrich, St. Louis, Missouri, US),

0.2% formic acid (Sigma Aldrich, St. Louis, Missouri, US)) from 7% to 95% over 115 minutes

working at a flow rate of 3μl/min. Raw data were processed with Skyline v20.1.0.155 (MacCoss

Lab Software, Dept of Genome Sciences, UW) and the total area of each peptide transition was

used for the relative quantification of the specific proteins. For each protein, at least two proto-

typic peptides were selected and at least two transitions for each parent ion were monitored, as

in silico predicted by using Skyline. Proteins were not monitored all together but in three dif-

ferent runs, both for wild type and zQ175: run A, included HTT, HOMER1, RIC8A; run B,

ATP2A2, APO-A4, OSBPL2; run C, SAMM50, SERPIN B6, CAMK2A, STIP1 and in each run

ACTIN was monitored as the internal standard. Each run was analyzed in duplicate and the

total area of each peptide transitions was used for the relative quantification of the specific pro-

teins, normalized for actin FC.

Statistical analyses

Multiexperiment Viewer v4.9.0 [43], (MeV) was employed to perform statistical analysis of

MaxQuant output. Western blots results were evaluated by univariate statistical analysis using

GraphPad Prism 8.0, and the results are presented as the mean ± standard deviation (SD) by

three biological replicates. The statistical significance of the observed difference in western

blot analysis was determined by parametric (Welch’s t) or non-parametric (Mann–Whitney

test) tests when data failed the Shapiro–Wilk normality test. Mass spectrometry data (LF) sta-

tistical significance was determined by the unpaired Student’s t-test and differences were con-

sidered statistically significant at Benjamini-Hochberg corrected p-value (FDR)<0.05 [44].
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Functional over-representation analysis

STRING database (https://string-db.org/) [45] (STRING v11: Protein-Protein Association

Networks With Increased Coverage, Supporting Functional Discovery in Genome-Wide

Experimental Datasets) was used to perform a pathways enrichment analysis on differentially

expressed proteins in mouse brains identified in each method (NSAF, Rsc, CBN(P), CBN(S)).

Results

Development of a new method for Spectral Counts normalization

A new mathematic method, called Complexity Based Normalization (CBN), was developed for

the normalization of Spectral Counts data in differential proteomics experiments to calculate

the relative Fold Change for each protein between two experimental conditions. The new for-

mula (1) employed for SpCs normalization is reported as follows in comparison with the Nor-

malized Spectra Abundance Factor (NSAF) (2) and the Spectral Counts log Ratio (RSC) (3)

methods.

CBNx;M ¼
Sx;M
tM
þ f ð1Þ

NSAFx;M ¼

Sx;M
Lx

PP
i¼1

Si;M
Li

ð2Þ

RSCx;M
¼ log2

Sx;M þ f
tM � Sx;M þ f

 !

ð3Þ

In CBN methods (1), Sx,M are the Spectral Counts of protein x in mixture M, tM are the

total spectral counts of mixture M, f is the complexity-based adjustment factor. In addition to

common variables, in NSAF method (2) Li represents the amino acid length of "i" protein,

while P is the total number of proteins identified in the analysis. Finally, in the RSC method (3)

f is a fixed adjustment factor = 0.5.

The output of these formulas consists of a numeric value representing the quantity of a spe-

cific protein in each mixture that is used to calculate the relative Fold Change (FC). Both RSC

and CBN require the use of an adjustment factor "f" to avoid the presence of missing values. In

the RSC method, Beissbarth et al. [46] have fixed the f value constant to 0.5. For both CBN

methods we propose the employment of a variable adjustment factor according to sample

complexity. Specifically, the CBN formula has been developed with f = 1/P (CNB(P)), where P

is the number of proteins occurring in the MaxQuant output data or with f = 1/t (CBN(S)),

where t is the sum of all spectral counts associated to all proteins in all mixtures. As a conse-

quence of these definitions, the adjustment factor becomes complexity-based, since the P and t

values are both related to the total number of proteins in the sample.

Setting up the normalization methods on E. Coli proteome standard

sample

The newly developed CBN formulas were evaluated in comparison with existing normalization

methods in differential proteomics experiments using the label-free procedure applied to the

E. Coli proteome. Commercial tryptic digests from six different proteins (HBA, HBB, and BSA

from B. Taurus, ENO and ADH from S. Cerevisiae and PYG, from O. Cuniculus) were spiked

into a fixed matrix consisting of a constant amount of E. Coli total proteins tryptic digest, to
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mimic a real sample environment. Five mixtures (A, B, C, D, E) were prepared as described

above, in which only ADH and ENO tryptic peptides were added in different amounts. Each

mixture was analyzed by nanoLC-MS/MS in duplicates and the raw data processed by using

MaxQuant. Following MaxQuant analysis, a set of unnormalized SpCs data was obtained and

used to test the different normalization methodologies, NSAF, Rsc, and the newly developed

CBNs, either in terms of total identified proteins (CBN(P)) or spectral counts (CBN(S)).

A total of 409 proteins (P), including the six spiked standards were identified in all samples

by MaxQuant analysis, together with 17837 total spectral counts (t) (S1 Table). The P and t

experimental values were then introduced in the CBN formulas for the computation of the f

factor.

As a first step, the reproducibility of the different approaches was tested making use of the

two technical replicates prepared and analyzed for each mixture. As an example, Fig 1A–1D

shows the corresponding scatter plots concerning the quantitative measurements of all pro-

teins identified in the two replicates of mixture A by the four different normalization methods

used, i.e. NSAF, RSC, CBN(P) with f = 1/P and CBN(S) with f = 1/t.

When the data produced by the applied method were perfectly reproducible between the

two technical replicates, the scatter plot should result in a perfectly linear behavior (R2 = 1)

and, most importantly, should have a unitary slope.

As showed in Fig 1A–1D, a very poor correlation occurred when data were elaborated by

NSAF and Rsc in comparison to CBN methods, with a high number of points largely scattered,

therefore suggesting a lower level of reproducibility. Linear regression best-fit values are sum-

marized in S2 Table. It should be underlined that the scatter plots associated with the two CBN

methods showed quite similar shape although the value of the adjustment factor was greatly

different. Furthermore, as shown in panel 1B, a large scattering of data that could not be

accommodated in a linear behavior was observed in the RSC normalization method.

Fig 2A reports the slopes calculated for the best fitting lines in each pair of technical repli-

cates analyzed with the four methods for all samples except mixture B, since it showed a very

low reproducibility in all methods (S1 Fig), suggesting the occurrence of technical problems in

Fig 1. Scatter plots of the quantitative measurements of all the E. Coli proteins. Scatter plots of the quantitative

measurements of all the E. Coli proteins identified in the two replicates of mixture A by the four different

normalization methods used, i.e. NSAF (panel A), RSC (panel B), CBN(P) with f = 1/P (panel C) and CBN(S) with

f = 1/t (panel D). On the X-axis is reported the normalized Spectral Counts of replicate 1, and on the Y-axis the

normalized Spectral Counts of replicate 2.

https://doi.org/10.1371/journal.pone.0238037.g001
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the LC-MS/MS analysis. Findings reported in Fig 2A showed that all the SpCs methods dis-

played an acceptable behavior except for RSC, whose median value was much lower than the

expected value (i.e. 1) suggesting that a fixed adjustment factor "f" strongly affects the median

value. The reproducibility of each method was also evaluated by calculating the coefficient of

variation (CV) in the quantification of E. Coli proteins throughout the ten LC-MS/MS runs in

which the amount of E. Coli tryptic peptides was constant (Fig 2B). The RSC method showed a

very good behavior with a low coefficient of variation whereas the NSAF displayed a greater

dispersion of data and a very high CV value. This is very likely due to the absence of any

adjustment factor in this method making NSAF very susceptible to quantitative biases caused

by the absence of data. As showed, CBN(S) performed well, showing a CV dispersion interme-

diate between NSAF and Rsc. The best result occurred in CBN(P), which presented the lowest

CV values contained in the narrowest dispersion window, suggesting it as the most precise

among the investigated methods.

These preliminary data strengthened our hypothesis that differences in Fold Change values

are due to the different sizes of the adjustment factor, since the shape of the data is identical.

The normalization methods were then tested for their ability to correctly assess protein

quantification when two different sets of data were compared. Therefore, the five mixtures and

the corresponding replicates were compared by two according to the scheme: A1/B1, A2/B1,

A1/B2, A2/B2, etc., and the Fold Change (FC) values of all proteins in each pair were calcu-

lated. As the amount of E. Coli proteome was constant in all samples, the expecting Folding

Change value for each protein should have been equal to 1 (Log2 (FC) = 0, Fig 2C).

Fig 2. Comparative analysis of all spectral counts normalization methods applied to E. Coli proteome. (A) Median

values for the best fitting slopes calculated for each pair of technical replicates for all samples analyzed (except mixture

B) with each normalization method. (B) Coefficient of variation (CV) for the evaluation of data dispersion for all the

normalization methods used in the analysis of E. Coli proteome. (C) Representation of the logarithmic Fold Change

distribution around the theoretical value indicated by the point line for all normalization methods. (D) Box plots of the

CV for the fold change in the mix E / mix D pair, calculated on all the four possible pairs of the technical replicates. In

panels B and D the box and whisker extremes represent 25–75%.

https://doi.org/10.1371/journal.pone.0238037.g002
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For each pair, the mean value of the Fold Change and its associated CV was calculated. As

an example, in Fig 2D the data related to the four possible combinations of mixture E/mixture

D pair were reported. Inspection of the results showed a very regular distribution of data

points for the CBN(P) method, with more than 75% of values having an associated CV of 25%

or less. NSAF and Rsc displayed a slightly more dispersed distribution of Fold Change values,

while CBN(S) showed the highest dispersion of data.

Then, we moved to evaluate the statistical relevance of proposed methods, through the cal-

culation of False Discovery Rate (FDR). An unpaired Student’s t-test was performed to extrap-

olate the E. Coli statistically significant Differentially Expressed Proteins (DEPs): the latter

represented the pool of false positives, since no variations were expected in E. Coli proteins.

The FDRs, calculated as the percentage of false positives of total identified proteins, resulted in

5.1% for Rsc, 6.1% for both CBNs, and 7.6% for NSAF. These values are very close to the refer-

ence one (5%), indicating a high reliability of all methods, excepted NSAF, which showed the

highest value of false positives.

Furthermore, for each method the values of Fold Change cutoffs were estimated, treating

the standard mixtures A—C and D—E as a couple of samples to be compared (A and C vs D

and E).

The FC cutoffs were calculated for each method by evaluating the dispersion of FCs of the

unchangeable proteins of E. Coli proteome, considered not statistically significant according to

unpaired Student’s t-test (p<0.05). The FC thresholds were defined by the lower Q1-

(IQR�1.5) and upper Q3+(IQR�1.5) extremes, where Q1, Q3 represented 25 and 75 percentiles

respectively, and IQR is defined as the inter-quartile distance. The obtained FC cutoffs were

summarized in Table 1:

These findings showed very similar results for CBN(S), Rsc, and NSAF, while CBN(P) per-

formed quite differently. In particular, its narrowest cutoffs again confirmed that CBN(P) is

the most reliable method in the detection of slight differences in protein expression levels (low

FCs), which in biological samples might be relevant.

Comparison of normalization methods for the quantification of the six

standard proteins spiked within the E. Coli proteome

The different normalization methods were then evaluated in the quantification of the Fold

Changes of the six standard proteins spiked within the E. Coli proteome.

The Fold Change values were determined by all methods for the six standard proteins

spiked within the E. Coli proteome in all mixtures (S3 Table).

The performances of the different normalization methods were evaluated for the quantifi-

cation of BSA, HBA, HBB, and PYG proteins, whose concentration was constant in all mix-

tures, and for quantification of ENO and ADH, whose amount changed in the samples. Fig 3A

reports plots showing the distribution of the logarithmic Fold Change for unchangeable pro-

teins obtained with the four normalization methods. All methods displayed similar results

Table 1. Methods fold changes cutoffs.

METHOD Lower FC value Upper FC value

CBN(P) 0.79 1.20

CBN(S) 0.49 1.53

NSAF 0.45 1.60

RSC 0.51 1.51

Fold Changes cutoffs calculated for each method are reported, indicating upper and lower significant values.

https://doi.org/10.1371/journal.pone.0238037.t001
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indicating a general high accuracy in the FC measurements, as mainly demonstrated in BSA

and HBB, where the mean values agree to the true value (FC = 0). In HBA the best fit occurred

in CBN(P) method, confirming very good performances in terms of accuracy and precision.

However, almost all measured values scattered within 0.3 logarithmic units from the theoreti-

cal values, corresponding to an absolute Fold Change of 1.2, which is reasonably considered as

an unchanged amount of protein.

The linear correlations between experimental and theoretical values obtained for all differ-

ent normalization methods were investigated for ENO and ADH, whose concentrations were

changeable (Fig 3B). Very similar correlation values were obtained for both proteins in the cal-

culation of relative abundance determined by NSAF, Rsc and CBNs, suggesting that all meth-

ods are equally able to correctly evaluate differences in the amount of proteins. For ENO,

linear correlations were confirmed also decreasing 10 times the concentration of the lowest

point reported in Fig 3B (data not shown), confirming a good behavior for all methods.

In conclusion, the quantitative measurement using standard mixtures demonstrated that

both the newly proposed CBN methods resulted reliable in the estimation of all expected FCs,

either when the protein amount changed or when it was constant, for which they showed a

very good adherence to theoretical data even in a complex mixture.

Fig 3. Fold change analysis comparing all spectral counts normalization methods. (A) The mean Fold Change

values for unchangeable proteins (BSA, HBA, HBB, and PYG) within the ten different pairs of mixtures calculated by

the four normalization methods. The theoretical values are 0 and it is indicated by a point line. (B) Comparison of the

experimental and theoretical Fold Change values for the relative quantification of ENO and ADH obtained by using

the SpC-based methods and reported in the logarithmic scale. (C) Table reporting linear regression best-fit values for

all ENO and ADH linear regressions.

https://doi.org/10.1371/journal.pone.0238037.g003
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Application of CBN methods to the differential proteomics analysis of

samples from cerebral cortex from Huntington’s Disease mice

Once the effectiveness of the newly developed SpC-based normalization methods was defined,

the two CBN approaches were challenged with the analysis of more complex samples, in which

the expression level of a large number of proteins is expected to significantly change. A label-

free differential proteomics experiment was performed on the brain cortex proteome from

mice affected by Huntington’s Disease (HD) (homozygous mutant HTT knock in line zQ175)

[40] and corresponding control samples (WT).

Equal amounts of total protein extracts from three wild type and three mutant mice cortices

were separated by SDS-PAGE (S2 Fig) and each of the six lanes was cut in 29 slices that were

in situ hydrolyzed with trypsin. The corresponding 174 peptide mixtures were then analyzed

by nanoLC-MS/MS in duplicates.

The resulting set of 348 LC-MS/MS raw data (available via ProteomeXchange with identi-

fier PXD017471) was processed by MaxQuant for protein identification and quantification (S4

Table). The set of unnormalized SpCs data was then elaborated by the newly developed CBN

methods (CBN(P) and CBN(S)). The other methods (NSAF and Rsc) were used for compari-

son. The lists of proteins were then filtered according to their differential expression and statis-

tical significance (FDR<5%) by using the Multi experiment Viewer, as described above.

Statistically significant up- and down-regulated proteins, identified by each method according

to FC cut off values previously calculated, were reported in the histogram in Fig 4A. It is sur-

prising to note that the two CBN methods led to the identification of a quite different number

of statistically significant proteins. In CBN(S) as well as Rsc, it was nearly 140, whereas the

CBN(P) as well as the NSAF approach led to the identification of only about a hundred of sig-

nificant proteins.

In particular, the specific and shared proteins were highlighted in a Venn diagram (Fig 4B).

Details of statistically significant identified proteins were summarized in S5 Table.

The reliability of the proposed normalization methods was further confirmed by quantifica-

tion of some selected proteins by two independent methodologies, i.e. western blot analyses

and Multiple Reaction Monitoring (MRM) mass spectrometry analysis.

In western blot assays (Fig 5A), the expression levels of IRGM1, OSBPL2 and SERPIN B6,

which were up-regulated in HD mice and hnRNP H, HTT, SAMM50, UQCRQ and

HOMER1, whose expression was instead decreased in HD mice were evaluated on total pro-

tein extracts of three WT and three HD mice (the same samples employed for the proteomic

experiment), in duplicate.

Fig 4. Visualization of identified proteins with all methods in the WT and HD mouse model. (A) The histogram

shows for each method the number of proteins that appeared to be both differentially expressed and statistically

significant. (B) Venn diagram referred to all proteins. The central area represents the proteins common to all methods.

https://doi.org/10.1371/journal.pone.0238037.g004
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Upon the densitometric analysis, each sample was normalized with the intensity of β-actin

developed on the same membrane, except HTT normalized with the intensity of vinculin. The

normalized intensities were then evaluated by univariate statistical analysis and the results

summarized in Table 2 and graphically reported in Fig 5C.

Since in several cases the differences in expression levels were about 20–30%, the western

blot technique might not be enough reliable in detections on a restricted number of replicates.

Therefore, we integrated validation experiments by quantifying some proteins by using a

tandem mass spectrometry methodology: the Multiple Reaction Monitoring (MRM). HTT,

SERPIN B6, HOMER1, OSBPL2, and SAMM50 were also monitored by MRM, together with

other proteins, APO-A4, CAMK2A, STIP1, RIC8A and ATP2A2, whose antibodies were not

available or not efficient in western blot analyses. ACTIN was monitored too and employed as

an internal standard for normalization procedure.

In detail, three zQ175 and WT cortex brain samples (the same samples employed for the

proteomic experiment) were pooled respectively, and few micrograms were employed for a

shotgun proteomics experiment by using the MRM targeted approach. Peptide mixtures were

separated by nanoLC-MS/MS in duplicate and two or more transitions of at least two proteoty-

pic peptides were monitored for each of the above proteins and employed for relative protein

quantification. Areas of monitored transitions (Fig 5B, S6 Table) were measured, mediated

among transitions, and all peptides belonging to the same protein, employed to calculate FC,

which were normalized with FC measured for ACTIN in each couple of runs. FC results are

summarized in Table 2 and graphically reported in Fig 5D.

A strong agreement among all measured FCs emerged by comparing the results obtained

by western blot and MRM, confirming the reliability in the validation of both methods. More-

over, for all proteins, the variation trends detected by LF approaches were confirmed by both

methods (Table 2) also in the detection of slight FCs.

Fig 5. Validation of a selected group of proteins differentially expressed in WT and HD mouse model. (A)

Western blot assays performed on total protein extracts from three mutant (zQ175(1), zQ175(2), zQ175(3)), and three

wild-type (wt(1), wt(2), wt(3)) mice with antibodies against the selected proteins. β-actin was used for normalization.

(B) MRM superimposed traces of transitions of one of CAMK2A proteotypic peptide reported for zQ175 (left panel)

and WT (right panel) together with one ACTIN peptide transition. (C) Densitometric analysis of data from the

western blot of panel A. The indicated values in the graph represent the percentage of arbitrary units compared to WT

to which 100% was assigned. Results are represented as the as mean ± SD (standard deviation). The statistical

significance was evaluated by parametric (Welch’s) or non-parametric (Mann-Whitney) tests when data failed the

Shapiro–Wilk normality test. � p< 0.05, �� p< 0.01 ��� p< 0.001, ���� p< 0.0001. (D) Fold Change measured by

MRM analysis of pooled HD and WT samples, respectively.

https://doi.org/10.1371/journal.pone.0238037.g005
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In detail, levels of HTT protein are significantly reduced in HD mice compared to controls,

according to previously observed [47]. This protein was identified by Rsc and CBN approaches

as statistically significant, although the three methods measured very different FC values: CBN

(S) FC = 0.08, CBN(P) FC = 0.59, Rsc FC = 0.14. By comparing these values with those

obtained by western blot (0.42) and MRM (0.59), the FC measured by CBN(P) was the only

perfectly in agreement with both values. This finding was not a random or a sporadic event,

but it was recurrent in all proteins, from those quantified also in other methods (HTT,

SAMM50, HOMER1, IRGM1, RIC8A, STIP1, OSBPL2, UQCRQ) to those statistically signifi-

cant only for CBN(P) (CAMK2A, APO-A4, ATP2A2) (Table 2).

hnRNP H and UQCRQ are proteins identified as statistically significant only by CBN(S),

while SERPIN B6 varied significantly for all methods excepted CBN(P). hnRNP H and SER-

PIN B6 were endorsed by western blot assays, founding their densitometric mean values statis-

tically significant. Surprisingly, FC values calculated by CBN(S) for these proteins strongly

agreed with those obtained from the other methods. Altogether these data confirm that the

quantification of results obtained by normalization of the differential proteomic data per-

formed by the CBN methods is reliable, although CBN(P) was confirmed to be the best in

terms of precision and reliability in comparison with CBN(S) and the other investigated

methods.

The results of the differential proteomics experiments were then evaluated on a functional

basis by gathering the differentially expressed proteins within biological functional networks.

A bioinformatic analysis involving all the differentially expressed proteins identified by all

methods were carried out using KEGG pathways and the STRING databases. The results are

summarized in Table 3 where the main pathways showing FDR<0.05 are reported. Functional

classes showing the lower FDR values include metabolic pathways, oxidative phosphorylation,

and neurodegenerative diseases (Parkinson’s Disease, Huntington’s Disease, Alzheimer’s Dis-

ease), confirming the effectiveness of the newly developed methods not only in terms of sensi-

tivity in the detection of single up- or down-regulated proteins, but also looking at the

biological meaning of aggregated results.

Table 2. Summary of proteins FCs validated by western blot and/or MRM.

Protein FC MRM FC WB FC CBN(S) FC CBN(P) FC RSC FC NSAF

HTT 0.59 0.42 0.08 0.59 0.14 /

CAMK2A 0.44 / / 0.67 / /

SAMM50 0.80 0.66 0.44 0.69 0.47 /

ATP2A2 0.69 / / 0.69 / /

HOMER1 0.60 0.72 0.45 0.71 0.45 /

IRGM1 / 1.93 19.73 1.22 4.09 UP

APO-A4 1.27 / / 1.29 / /

RIC8A 1.30 / 4.46 1.30 / /

STIP1 1.35 / 2.38 1.32 2.11 2.50

OSBPL2 1.32 1.18 6.37 / 2.92 /

SERPIN B6 1.33 1.99 2.55 / 2.02 2.75

HNRNP H / 0.46 0.30 / / /

UQCRQ / 0.71 0.36 / / /

In the table proteins selected for validation and their FC values calculated by LF, MRM, and WB methods are reported.

https://doi.org/10.1371/journal.pone.0238037.t002
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Discussion

Label-Free methods for differential proteomics investigations generate a large amount of data

that needs to be normalized, i.e. corrected for instrumental or uncontrollable variations before

becoming employable for quantitative purposes. The choice of suitable normalization formula

is a not trivial aspect in these approaches, because it might strongly affect the experimental

results.

For Spectral Counts based Label-Free approaches, normalization procedure has been

assessed in different ways, resorting in some cases to the use of fixed and arbitrary corrective

factors, such as in Rsc formula [33], to overcome biases associated with the presence of missing

values in the analysis, as occurs in NSAF method [39] lacking of adjustment elements.

In light of these considerations, we decide to test new formulas for SpCs data normalization,

in which the corrective factor was not an arbitrary choice of the operator, but strictly and

directly defined by an intrinsic property of the system under investigation, such as its

complexity.

A new approach defined Complexity Based Normalization (CBN) was introduced for the

normalization of Spectral Counts data in differential proteomics experiments to calculate the

relative protein Fold Changes. The new formula employed a complexity-based adjustment fac-

tor generating two different methods, CBN(P) where f = 1/P and CBN(S) in which f = 1/t with

P and t referring to the total number of identified proteins (P) or the total spectral counts in

the LC-MS/MS analysis (t), respectively.

The performances in terms of reliability, precision, accuracy, linearity, and sensitivity of the

two CBN methods in the analysis of raw data from differential proteomics experiments carried

out according to the label-free strategies were evaluated in comparison with existing SpC-

based normalization approaches, NSAF and Rsc.

Methods evaluation was carried out by analyzing a set of samples consisting of six different

standard proteins spiked in an E. Coli total tryptic digest matrix and the capability of the

Table 3. List of functional pathways identified by STRING analysis.

Pathways Description Observed Gene Count

(NSAF)

FDR Observed Gene

Count (RSC)

FDR Observed Gene Count

(CBN(P))

FDR Observed Gene Count

(CBN(S))

FDR

Metabolic pathways 19 2.62E-

09

42 1.10E-

09

22 2.30E-06 42 1.51E-

10

Oxidative

phosphorylation

7 0.0037 14 9.68E-

09

7 0.000105 12 7.09E-

07

Parkinson’s disease 9 0.00049 14 1.77E-

08

8 1.53E-05 12 1.11E-

06

Huntington’s disease 9 0.00156 14 2.78E-

07

9 9.82E-06 13 1.24E-

06

Alzheimer’s disease 9 0.00111 13 8.40E-

07

7 0.000397 12 3.94E-

06

Calcium signaling

pathway

8 0.00412 7 0.0328 7 0.000566 8 0.0109

Val, Leu and Ile

degradation

6 0.00049 5 0.00648 3 0.0269 5 0.00578

cGMP-PKG signaling

pathway

8 0.0037 8 0.0094 5 0.02 7 0.0247

Fatty acid degradation 5 0.00194 4 0.0254 3 0.0213 4 0.0223

Statistically significant proteins identified by each method were analyzed by STRING, a bioinformatic tool for the functional clusterization in protein networks; all

pathways are reported in descending order of FDR.

https://doi.org/10.1371/journal.pone.0238037.t003
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methods to quantify both the total matrix and the spiked proteins were monitored. Both CBN

(P) and CBN(S) showed very good reproducibility in the analysis of the technical replicates

and were able to correctly quantify the unchanged amount of E. Coli proteins. When the accu-

racy of all methods was compared, CBN(P) showed the best behavior, while the CBN(S) per-

formance was comparable with the one showed by NSAF and RSC methods; a similar trend

has been detected also for unchangeable spiked proteins.

In addition, other differences could be observed between all methods when the coefficient

of variation in the quantification of E. Coli proteins was examined. Although both CBN meth-

ods displayed a low dispersion of data and low CV, CBN(P) displayed a better performance

than CBN(S) suggesting that the precision is affected by the size of the adjustment factor.

The evidence that the choice of the adjustment factor value might affect performances of

SpC-based normalization approaches is confirmed also for NSAF and RSC methods. In fact,

NSAF showed low reproducibility greater dispersion of data and very high CV value especially

in the quantification of the lowest abundant proteins. This is likely due to the absence of any

adjustment factor in this method making NSAF very susceptible to quantitative biases caused

by the absence of data. The Rsc method showed low reproducibility in the quantification of

lowest abundance proteins in the quantitative analysis of E. Coli proteome but low coefficient

of variation in the quantitation of spiked proteins suggesting again that a fixed adjustment fac-

tor "f" might affect the analysis of a large set of data.

Otherwise, all quantitative methods were characterized by a wide linearity concentration-

range when changeable spiked proteins were quantified, proving a response directly propor-

tional to the protein amount in a wide concentration range.

When CBNs methods were tested on biological complex samples (protein extracts from the

brain of HD mice vs WT), both methods generated reproducible, accurate, sensible, and reli-

able quantitative data. Their FC trends were always confirmed by western blot and/or MRM

validations, suggesting that a complexity-based adjustment factor properly works in the cor-

rection of output data, leading to suitable final quantitative measurements of protein expres-

sion variations.

However, the two CBN methods performed differently in the Fold Change calculation.

Although CBN(P) recognized a lower number of changeable significant proteins, it has proven

to be the most reliable method to appreciate minimal statistically significant changes in protein

expression levels, since its FC cutoff was the narrowest among those calculated for other

methods.

Moreover, when the FC values calculated by all methods for selected proteins were com-

pared with those calculated by western blot and/or MRM, a surprisingly perfect accordance

was found solely with FCs derived from CBN(P), suggesting that this method performs as the

highest reliable and accurate among all. CBN(S), in most cases, performed more like Rsc and

NSAF than CBN(P).

Nevertheless, CBN(S) method showed a higher sensitivity in the detection of statistically

relevant FC of low abundant proteins that give rise to a low number of SpCs, such as UQCRQ

and hnRNP H. These proteins were statistically significant solely for CBN(S), but their FCs

were confirmed by western blot assays with a good accordance.

Differences in performances between CBN(P) and CBN(S) might be due to the dimension

of the adjustment factor, which is not negligible, considering that the difference between total

SpCs and total proteins is about two orders of magnitude (in mice analysis, total

SpCs = 2.45x105 and P = 2860).

Moreover, over-representation analysis of CBNs data carried out by STRING reveals that

the most of proteins flows in molecular pathways affected in HD brain tissue and other neuro-

degenerative model systems, thus confirming the robustness and the biological coherence of
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data provided by these new methods. Indeed, processes such as energy metabolism [5,48–51],

oxidative phosphorylation and mitochondria functionality [52–54], calcium homeostasis

[55,56], already known to be deregulated in cortical samples from HD mice, were identified,

thus indicating the highest correlation level of functional data.

In conclusion, in this study, we demonstrated how all SpCs normalization methods are

strongly affected by the presence/absence or by the value of adjustment factors “f”. The pres-

ence of a correction factor allows overcoming the effect of the absence of data in FC calculation

and leads to methods with the lowest coefficient of variation. Moreover, the association of the

"f" with sample complexity makes the operator free from the choice of the best value for the

correction factor.

Our data have shown that CBN(S) and CBN(P) are both a viable alternative to other exist-

ing SpC-based quantification methods. Furthermore, both CBN(S) and CBN(P) are two sensi-

tive methods, although each shows a different reactivity: CBN(P) is capable of appreciating

small but statistically and biologically significant FC variations in proteins well represented in

the proteome; on the contrary, the CBN(S) enhances the differences in levels of protein expres-

sion in lower abundant proteins.

Finally, if someone would ask which methods we prefer, our choice falls on CBN(P),

because it performs as the most reliable and sensitive “sensor” for FCs. In fact, from our point

of view, it is preferable to work on a lower number of data which, however, are the result of

more stringent and reliable selection standards, rather than getting lost in a sea of data often

difficult to interpret from a biological point of view.
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S1 Fig. Median values for the best fitting slopes calculated for each pair of technical repli-

cates including mixture B for all samples analyzed with each normalization method.
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S2 Fig. Images of the SDS-PAGE of mice samples. Three biological replicates cortices of

zQ175 and WT mice were loaded and gel slices were cut following the scheme reported.

(PDF)

S3 Fig. Images of the entire membranes whose inserts are reported in Fig 5A. Full-length
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and Samm50 in zQ175 and WT mice were developed with same antibodies. Technical repli-

cates for SerpinB6 were developed with two different antibodies, as reported below the images.
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S1 Table. Details of the qualitative and quantitative mass spectrometric analysis of stan-

dard mixtures spiked in standard E. Coli proteome. In sheet 1, raw data generated by Max-

Quant following the bioinformatic analysis for protein identification and quantification are

reported. The processed protein groups applying each SpCs method normalization formulas

are disclosed in sheets 2, 3, 4, and 5.
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and X-intercept calculated by NSAF, RSC, CBN(P), and CBN(S) methods.

(XLS)

S3 Table. Fold Change value (FC) and expected Fold Change (exp FC) value by NSAF,

RSC, CBN(P) and CBN(S) methods. Included is Fold Change value (FC) and expected Fold

Change (exp FC) value of standard proteins (HBA, HBB, BSA, ADH, PYG, and ENO)
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measured and/or calculated in B/A, C/A, D/A, E/A, C/B, D/B, E/B, D/C, E/C and E/C mixture

by using NSAF, RSC, CBN(P), CBN(S).

(XLS)

S4 Table. Details of the qualitative and quantitative mass spectrometric analysis of zQ175

and Wild-Type mouse HD model. In sheet 1, raw data generated by MaxQuant following the

bioinformatic analysis for protein identification and quantification are reported. The pro-

cessed protein groups applying each SpCs method normalization formulas are disclosed in

sheets 2, 3, 4, and 5.

(XLS)

S5 Table. Statistically significant identified proteins. In the table are reported the FCs and p-

values of statistically significant identified proteins (p value<0.05) and FDR (<5%). Protein

names, gene names, Uniprot codes and peptides are also indicated as headers.

(XLSX)

S6 Table. Summary of MRM results. In the table are reported the FCs values of proteins vali-

dated by Multiple Reaction Monitoring (MRM). Run, protein names, peptide sequences, Colli-

sion Energy, m/z of precursor ions, m/z of fragment ions, total transition area, peptide FC, and
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