349 research outputs found

    Molecular characterization and expression pattern of zona pellucida proteins in gilthead seabream (Sparus aurata)

    Get PDF
    The developing oocyte is surrounded by an acellular envelope that is composed of 2–4 isoforms of zona pellucida (ZP) proteins. The ZP proteins comprise the ZP1, ZP2, ZP3, and ZPX isoforms. While ZP1 (ZPB) and ZP3 (ZPC) are present in all species, ZP2 (ZPA) is not found in teleost fish and ZPX is not found in mammals. In the present study, we identify and characterize the ZP1, ZP3 and ZPX isoforms of gilthead seabream. Furthermore, by analyzing the conserved domains, which include the external hydrophobic patch and the internal hydrophobic patch, we show that ZP2 and ZPX are closely related isoforms. ZP proteins are synthesized in either the liver or ovary of most teleosts. Only in rainbow trout has it been shown that zp3 has dual transcription sites. In gilthead seabream, all four mRNA isoforms are transcribed in both the liver and ovary, with zp1a, zp1b, and zp3 being highly expressed in the liver, and zpx being primarily expressed in the ovary. However, determination of the ZP proteins in plasma showed high levels of ZP1b, ZP3, and ZPX, with low or non-detectable levels of ZP1a. In similarity to other teleost ZPs, the hepatic transcription of all four ZP isoforms is under estrogenic control. Previously, we have shown that cortisol can potentiate estrogen-induced ZP synthesis in salmonids, and now we show that this is not the case in the gilthead seabream. The present study shows for the first time the endocrine regulation of a teleost ZPX isoform, and demonstrates the dual-organ transcriptional activities of all the ZP proteins in one species

    Tracking of unpredictable moving stimuli by pigeons

    Get PDF
    Despite being observed throughout the animal kingdom, catching a moving object is a complex task and little is known about the mechanisms that underlie this behavior in non-human animals. Three experiments examined the role of prediction in capture of a moving object by pigeons. In Experiment 1, a stimulus moved in a linear trajectory, but sometimes made an unexpected 90o turn. The sudden turn had only a modest effect on capture and error location, and the analyses suggested that the birds had adjusted their tracking to the novel motion. In Experiment 2, the role of visual input during a turn was tested by inserting disappearances (either 1.5 cm or 4.5 cm) on both the straight and turn trials. The addition of the disappearance had little effect on capture success, but delayed capture location with the larger disappearance leading to greater delay. Error analyses indicated that the birds adapted to the post-turn, post-disappearance motion. Experiment 3 tested the role of visual input when the motion disappeared behind an occluder and emerged in either a straight line or at a 90o angle. The occluder produced a disruption in capture success but did not delay capture. Error analyses indicated that the birds did not adjust their tracking to the new motion on turn trials following occlusion. The combined results indicate that pigeons can anticipate the future position of a stimulus, and can adapt to sudden, unpredictable changes in motion but do so better after a disappearance than after an occlusion

    Development of postural adjustments during reaching in typically developing infants from 4 to 18 months

    Get PDF
    Knowledge on the development of postural adjustments during infancy, in particular on the development of postural muscle coordination, is limited. This study aimed at the evaluation of the development of postural control during reaching in a supported sitting condition. Eleven typically developing infants participated in the study and were assessed at the ages of 4, 6, 10 and 18 months. We elicited reaching movements by presenting small toys at an arm’s length distance, whilst activity of multiple arm, neck and trunk muscles was recorded using surface EMG. A model-based computer algorithm was used to detect the onset of phasic muscle activity. The results indicated that postural muscle activity during reaching whilst sitting supported is highly variable. Direction-specific postural activity was inconsistently present from early age onwards and increased between 10 and 18 months without reaching a 100 % consistency. The dominant pattern of activation at all ages was the ‘complete pattern’, in which all direction-specific muscles were recruited. At 4 months, a slight preference for top-down recruitment existed, which was gradually replaced by a preference for bottom-up recruitment. We conclude that postural control during the ecological task of reaching during supported sitting between 4 and 18 months of age is primarily characterized by variation. Already from 4 months onwards, infants are—within the variation—sometimes able to select muscle recruitment strategies that are optimal to the task at hand

    Cortical activation to action perception is associated with action production abilities in young infants

    Get PDF
    The extent to which perception and action share common neural processes is much debated in cognitive neuroscience. Taking a developmental approach to this issue allows us to assess whether perceptual processing develops in close association with the emergence of related action skills within the same individual. The current study used functional near-infrared spectroscopy (fNIRS) to investigate the perception of human action in 4- to 6-month-old human infants. In addition, the infants' manual dexterity was assessed using the fine motor component of The Mullen Scales of Early Learning and an in-house developed Manual Dexterity task. Results show that the degree of cortical activation, within the posterior superior temporal sulcus—temporoparietal junction (pSTS-TPJ) region, to the perception of manual actions in individual infants correlates with their own level of fine motor skills. This association was not fully explained by either measures of global attention (i.e., looking time) or general developmental stage. This striking concordance between the emergence of motor skills and related perceptual processing within individuals is consistent with experience-related cortical specialization in the developing brain

    Laser capture microdissection of gonads from juvenile zebrafish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex determination and differentiation.</p> <p>Methods</p> <p>The laser capture microdissection technique enables isolation of specific cells and tissues and thereby removes the noise of gene expression from other cells or tissues in the gene expression profile. A protocol developed for laser microdissection of human gonocytes was adjusted and optimised to isolate juvenile zebrafish gonads.</p> <p>Results</p> <p>The juvenile zebrafish gonad is not morphologically distinguishable when using dehydrated cryosections on membrane slides and a specific staining method is necessary to identify the gonads. The protocol setup in this study allows staining, identification, isolation and subsequent RNA purification and amplification of gonads from individual juvenile zebrafish thereby enabling gonadal gene expression profiling.</p> <p>Conclusion</p> <p>The study presents a protocol for isolation of individual juvenile zebrafish gonads, which will enable future investigations of gonadal gene expression during the critical period of sex differentiation. Furthermore, the presented staining method is applicable to other species as it is directed towards alkaline phosphatase that is expressed in gonocytes and embryonic stem cells, which is conserved among vertebrate species.</p

    Index finger movement imitation by human neonates: motivation, learning, and left-hand preference

    Get PDF
    Imitation of a fine motor movement, index finger protrusion, was examined in 39 neonates using an ethologically based objective coding system. Results confirmed that imitation of finger movements exists, and infants demonstrated "learning" as imitation developed through an incomplete imitation stage. Neonatal imitation was more frequently left-handed, an early sign of laterality in motivation to be investigated further. The existence of index finger imitation in human neonates indicates that volitional control of individuated finger movements develops much earlier than previously thought. The differential increase of index finger protrusion movements during the imitation periods suggests that this behavior is not an automatic response triggered by general arousal but instead is a true indicator of purposeful neonatal imitation

    A Balance of BMP and Notch Activity Regulates Neurogenesis and Olfactory Nerve Formation

    Get PDF
    Although the function of the adult olfactory system has been thoroughly studied, the molecular mechanisms regulating the initial formation of the olfactory nerve, the first cranial nerve, remain poorly defined. Here, we provide evidence that both modulated Notch and bone morphogenetic protein (BMP) signaling affect the generation of neurons in the olfactory epithelium and reduce the number of migratory neurons, so called epithelioid cells. We show that this reduction of epithelial and migratory neurons is followed by a subsequent failure or complete absence of olfactory nerve formation. These data provide new insights into the early generation of neurons in the olfactory epithelium and the initial formation of the olfactory nerve tract. Our results present a novel mechanism in which BMP signals negatively affect Notch activity in a dominant manner in the olfactory epithelium, thereby regulating neurogenesis and explain why a balance of BMP and Notch activity is critical for the generation of neurons and proper development of the olfactory nerve

    Altered sense of Agency in children with spastic cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Children diagnosed with spastic Cerebral Palsy (CP) often show perceptual and cognitive problems, which may contribute to their functional deficit. Here we investigated if altered ability to determine whether an observed movement is performed by themselves (sense of agency) contributes to the motor deficit in children with CP.</p> <p>Methods</p> <p>Three groups; <sub>1) </sub>CP children, <sub>2) </sub>healthy peers, and <sub>3) </sub>healthy adults produced straight drawing movements on a pen-tablet which was not visible for the subjects. The produced movement was presented as a virtual moving object on a computer screen. Subjects had to evaluate after each trial whether the movement of the object on the computer screen was generated by themselves or by a computer program which randomly manipulated the visual feedback by angling the trajectories 0, 5, 10, 15, 20 degrees away from target.</p> <p>Results</p> <p>Healthy adults executed the movements in 310 seconds, whereas healthy children and especially CP children were significantly slower (p < 0.002) (on average 456 seconds and 543 seconds respectively). There was also a statistical difference between the healthy and age matched CP children (p = 0.037). When the trajectory of the object generated by the computer corresponded to the subject's own movements all three groups reported that they were responsible for the movement of the object. When the trajectory of the object deviated by more than 10 degrees from target, healthy adults and children more frequently than CP children reported that the computer was responsible for the movement of the object. CP children consequently also attempted to compensate more frequently from the perturbation generated by the computer.</p> <p>Conclusions</p> <p>We conclude that CP children have a reduced ability to determine whether movement of a virtual moving object is caused by themselves or an external source. We suggest that this may be related to a poor integration of their intention of movement with visual and proprioceptive information about the performed movement and that altered sense of agency may be an important functional problem in children with CP.</p

    What Affects Social Attention? Social Presence, Eye Contact and Autistic Traits

    Get PDF
    Social understanding is facilitated by effectively attending to other people and the subtle social cues they generate. In order to more fully appreciate the nature of social attention and what drives people to attend to social aspects of the world, one must investigate the factors that influence social attention. This is especially important when attempting to create models of disordered social attention, e.g. a model of social attention in autism. Here we analysed participants' viewing behaviour during one-to-one social interactions with an experimenter. Interactions were conducted either live or via video (social presence manipulation). The participant was asked and then required to answer questions. Experimenter eye-contact was either direct or averted. Additionally, the influence of participant self-reported autistic traits was also investigated. We found that regardless of whether the interaction was conducted live or via a video, participants frequently looked at the experimenter's face, and they did this more often when being asked a question than when answering. Critical differences in social attention between the live and video interactions were also observed. Modifications of experimenter eye contact influenced participants' eye movements in the live interaction only; and increased autistic traits were associated with less looking at the experimenter for video interactions only. We conclude that analysing patterns of eye-movements in response to strictly controlled video stimuli and natural real-world stimuli furthers the field's understanding of the factors that influence social attention
    corecore