265 research outputs found

    Dietary garlic and hip osteoarthritis: evidence of a protective effect and putative mechanism of action

    Get PDF
    Background Patterns of food intake and prevalent osteoarthritis of the hand, hip, and knee were studied using the twin design to limit the effect of confounding factors. Compounds found in associated food groups were further studied in vitro. Methods Cross-sectional study conducted in a large population-based volunteer cohort of twins. Food intake was evaluated using the Food Frequency Questionnaire; OA was determined using plain radiographs. Analyses were adjusted for age, BMI and physical activity. Subsequent in vitro studies examined the effects of allium-derived compounds on the expression of matrix-degrading proteases in SW1353 chondrosarcoma cells. Results Data were available, depending on phenotype, for 654-1082 of 1086 female twins (median age 58.9 years; range 46-77). Trends in dietary analysis revealed a specific pattern of dietary intake, that high in fruit and vegetables, showed an inverse association with hip OA (p = 0.022). Consumption of 'non-citrus fruit' (p = 0.015) and 'alliums' (p = 0.029) had the strongest protective effect. Alliums contain diallyl disulphide which was shown to abrogate cytokine-induced matrix metalloproteinase expression. Conclusions Studies of diet are notorious for their confounding by lifestyle effects. While taking account of BMI, the data show an independent effect of a diet high in fruit and vegetables, suggesting it to be protective against radiographic hip OA. Furthermore, diallyl disulphide, a compound found in garlic and other alliums, represses the expression of matrix-degrading proteases in chondrocyte-like cells, providing a potential mechanism of action

    Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo

    Get PDF
    Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA. Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs were studied. Separate groups of 12 animals were killed at age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids. Results: Severity of OA increased progressively in guinea pigs with age. Glycated, oxidized, and nitrated amino acids were increased markedly at week 36, with glucosepane and dityrosine increasing progressively from weeks 20 and 28, respectively. Glucosepane correlated positively with OA histological severity (r = 0.58, p < 0.0001) and instantaneous modulus (r = 0.52–0.56; p < 0.0001), oxidation free adducts correlated positively with OA severity (p < 0.0009–0.0062), and hydroxyproline correlated positively with cartilage thickness (p < 0.0003–0.003). Interleukin-1β increased the release of glycated and nitrated amino acids from chondrocytes in vitro. In clinical translation, plasma glucosepane was increased 38% in early-stage OA (p < 0.05) and sixfold in patients with advanced OA (p < 0.001) compared with healthy controls. Conclusions: These studies further advance the prospective role of glycated, oxidized, and nitrated amino acids as serum biomarkers in diagnostic algorithms for early-stage detection of OA and other arthritic disease. Plasma glucosepane, reported here for the first time to our knowledge, may improve early-stage diagnosis and progression of clinical OA

    Assessing a risk tailored intervention to prevent disabling low back pain - protocol of a cluster randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although most patients with low back pain (LBP) recover within a few weeks a significant proportion has recurrent episodes or will develop chronic low back pain. Several mainly psychosocial risk factors for developing chronic LBP have been identified. However, effects of preventive interventions aiming at behavioural risk factors and unfavourable cognitions have yielded inconsistent results. Risk tailored interventions may provide a cost efficient and effective means to take systematic account of the individual risk factors but evidence is lacking.</p> <p>Methods/Design</p> <p>This study will be a cluster-randomised controlled trial comparing screening and a subsequent risk tailored intervention for patients with low back pain to prevent chronic low back pain compared to treatment as usual in primary care. A total of 600 patients from 20 practices in each study arm will be recruited in Berlin and Goettingen. The intervention comprises the following elements: Patients will be assigned to one of four risk groups based on a screening questionnaire. Subsequently they receive an educational intervention including information and counselling tailored to the risk group. A telephone/email consulting service for back pain related problems are offered independent of risk group assignment. The primary outcomes will be functional capacity and sick leave.</p> <p>Discussion</p> <p>This trial will evaluate the effectiveness of screening for risk factors for chronic low back pain followed by a risk tailored intervention to prevent chronic low back pain. This trial will contribute new evidence regarding the flexible use of individual physical and psychosocial risk factors in general practice.</p> <p>Trial registration</p> <p>ISRCTN 68205910</p

    Intersection of inflammation and herbal medicine in the treatment of osteoarthritis

    Get PDF
    Herbal remedies and dietary supplements have become an important area of research and clinical practice in orthopaedics and rheumatology. Understanding the risks and benefits of using herbal medicines in the treatment of arthritis, rheumatic diseases, and musculoskeletal complaints is a key priority of physicians and their patients. This review discusses the latest advances in the use of herbal medicines for treating osteoarthritis (OA) by focusing on the most significant trends and developments. This paper sets the scene by providing a brief introduction to ethnopharmacology, Ayurvedic medicine, and nutrigenomics before discussing the scientific and mechanistic rationale for targeting inflammatory signalling pathways in OA by use of herbal medicines. Special attention is drawn to the conceptual and practical difficulties associated with translating data from in-vitro experiments to in-vivo studies. Issues relating to the low bioavailability of active ingredients in herbal medicines are discussed, as also is the need for large-scale, randomized clinical trial

    Frequency and Interrelations of Risk Factors for Chronic Low Back Pain in a Primary Care Setting

    Get PDF
    INTRODUCTION: Many risk factors have been identified for chronic low back pain (cLBP), but only one study evaluated their interrelations. We aimed to investigate the frequency of cLBP risk factors and their interrelations in patients consulting their general practitioners (GPs) for cLBP. METHODS: A cross-sectional, descriptive, national survey was performed. 3000 GPs randomly selected were asked to include at least one patient consulting for cLBP. Demographic, clinical characteristics and the presence of cLBP risk factors were recorded. The frequency of each cLBP risk factor was calculated and multiple correspondence analysis (MCA) was performed to study their interrelations. RESULTS: A total of 2068 GPs (68.9%) included at least 1 patient, for 4522 questionnaires analyzed. In the whole sample of patients, the 2 risk factors most commonly observed were history of recurrent LBP (72.1%) and initial limitation of activities of daily living (66.4%). For working patients, common professional risk factors were beliefs, that LBP was due to maintaining a specific posture at work (79.0%) and frequent heavy lifting at work (65.5%). On MCA, we identified 3 risk-factor dimensions (axes) for working and nonworking patients. The main dimension for working patients involved professional risk factors and among these factors, patients' job satisfaction and job recognition largely contribute to this dimension. DISCUSSION: Our results shed in light for the first time the interrelation and the respective contribution of several previously identified cLBP risk factors. They suggest that risk factors representing a "work-related" dimension are the most important cLBP risk factors in the working population

    Effects of Payena dasyphylla (Miq.) on hyaluronidase enzyme activity and metalloproteinases protein expressions in interleukin-1beta stimulated human chondrocytes cells

    Get PDF
    Background: Hyaluronidases have been found as the target enzymes in the development of osteoarthritis (OA) disease. While there is still no curative treatment for this disease, recent studies on the treatment of OA were focused on the effectiveness of natural products which are expected to improve the symptoms with minimal side effects. The aim of this study was to screen selected Malaysian plants on their anti-hyaluronidase activity as well as to evaluate the active plant and its derived fractions on its potential anti-arthritic and antioxidant activities.Methods: A total of 20 methanolic crude extracts (bark and leaf) from ten different plants were screened using a colorimetric hyaluronidase enzymatic assay. The active plant extract (Payena dasyphylla) was then studied for its hyaluronidase inhibitory activity in the interleukin-1β (IL-1β) stimulated human chondrocytes cell line (NHAC-kn) using zymography method. The Payena dasyphylla methanolic bark extract was then fractionated into several fractions in where the ethyl acetate (EA) fraction was evaluated for its inhibitory effects on the HYAL1 and HYAL2 gene expressions using reverse transcription-polymerase chain reaction (RT-PCR) technique. While the MMP-3 and MMP-13 protein expressions were evaluated using western blot method. The phenolic and flavonoid contents of the three fractions as well as the antioxidant property of the EA fraction were also evaluated.Results: Bark extract of Payena dasyphylla (100 μg/ml) showed the highest inhibitory activity against bovine testicular hyaluronidase with 91.63%. The plant extract also inhibited hyaluronidase expression in the cultured human chondrocyte cells in response to IL-1β (100 ng/ml). Similarly, treatment with Payena dasyphylla ethyl acetate (EA) fraction (100 μg/ml) inhibited the HYAL1 and HYAL2 mRNA gene expressions as well as MMP-3 and MMP-13 protein expression in a dose dependent manner. Payena dasyphylla EA fraction has demonstrated the highest amount of phenolic and flavonoid content with 168.62 ± 10.93 mg GAE/g and 95.96 ± 2.96 mg RE/g respectively as compared to water and hexane fractions. In addition, the Payena dasyphylla EA fraction showed strong antioxidant activity with IC50 value of 11.64 ± 1.69 μg/mL.Conclusion: These findings have shown that Payena dasyphylla might contained potential phenolic compounds that inhibiting the key enzyme in osteoarthritis development, which is the hyaluronidase enzyme through interruption of HYAL1 and HYAL1 gene expressions. The degradation of cartilage could also be inhibited by the plant through suppression of MMP-3 and MMP-13 protein expressions. We also reported that the inhibitory effect of Payena dasyphylla on hyaluronidase activity and expression might be due to its anti-oxidant property

    Analysis of osteoarthritis in a mouse model of the progeroid human DNA repair syndrome trichothiodystrophy

    Get PDF
    The increasing average age in developed societies is paralleled by an increase in the prevalence of many age-related diseases such as osteoarthritis (OA), which is characterized by deformation of the joint due to cartilage damage and increased turnover of subchondral bone. Consequently, deficiency in DNA repair, often associated with premature aging, may lead to increased pathology of these two tissues. To examine this possibility, we analyzed the bone and cartilage phenotype of male and female knee joints derived from 52- to 104-week-old WT C57Bl/6 and trichothiodystrophy (TTD) mice, who carry a defect in the nucleotide excision repair pathway and display many features of premature aging. Using micro-CT, we found bone loss in all groups of 104-week-old compared to 52-week-old mice. Cartilage damage was mild to moderate in all mice. Surprisingly, female TTD mice had less cartilage damage, proteoglycan depletion, and osteophytosis compared to WT controls. OA severity in males did not significantly differ between genotypes, although TTD males had less osteophytosis. These results indicate that in premature aging TTD mice age-related changes in cartilage were not more severe compared to WT mice, in striking contrast with bone and many other tissues. This segmental aging character may be explained by a difference in vasculature and thereby oxygen load in cartilage and bone. Alternatively, a difference in impact of an anti-aging response, previously found to be triggered by accumulation of DNA damage, might help explain why female mice were protected from cartilage damage. These findings underline the exceptional segmental nature of progeroid conditions and provide an explanation for pro- and anti-aging features occurring in the same individual

    Proteoglycan-4 Regulates Fibroblast to Myofibroblast Transition and Expression of Fibrotic Genes in the Synovium

    Get PDF
    Background: Synovial tissue fibrosis is common in advanced OA with features including the presence of stress fiber-positive myofibroblasts and deposition of cross-linked collagen type-I. Proteoglycan-4 (PRG4) is a mucinous glycoprotein secreted by synovial fibroblasts and is a major component of synovial fluid. PRG4 is a ligand of the CD44 receptor. Our objective was to examine the role of PRG4-CD44 interaction in regulating synovial tissue fibrosis in vitro and in vivo. Methods: OA synoviocytes were treated with TGF-β ± PRG4 for 24h and α-SMA content was determined using immunofluorescence. Rhodamine-labeled rhPRG4 was incubated with OA synoviocytes ± anti-CD44 or isotype control antibodies and cellular uptake of rhPRG4 was determined following a 30-min incubation and α-SMA expression following a 24-h incubation. HEK-TGF-β cells were treated with TGF-β ± rhPRG4 and Smad3 phosphorylation was determined using immunofluorescence and TGF-β/Smad pathway activation was determined colorimetrically. We probed for stress fibers and focal adhesions (FAs) in TGF-β-treated murine fibroblasts and fibroblast migration was quantified ± rhPRG4. Synovial expression of fibrotic markers: α-SMA, collagen type-I, and PLOD2 in Prg4 gene-trap (Prg4GT) and recombined Prg4GTR animals were studied at 2 and 9 months of age. Synovial expression of α-SMA and PLOD2 was determined in 2-month-old Prg4GT/GT&Cd44−/− and Prg4GTR/GTR&Cd44−/− animals. Results: PRG4 reduced α-SMA content in OA synoviocytes (p \u3c 0.001). rhPRG4 was internalized by OA synoviocytes via CD44 and CD44 neutralization attenuated rhPRG4’s antifibrotic effect (p \u3c 0.05). rhPRG4 reduced pSmad3 signal in HEKTGF- β cells (p \u3c 0.001) and TGF-β/Smad pathway activation (p \u3c 0.001). rhPRG4 reduced the number of stress fiberpositive myofibroblasts, FAs mean size, and cell migration in TGF-β-treated NIH3T3 fibroblasts (p \u3c 0.05). rhPRG4 inhibited fibroblast migration in a macrophage and fibroblast co-culture model without altering active or total TGF-β levels. Synovial tissues of 9-month-old Prg4GT/GT animals had higher α-SMA, collagen type-I, and PLOD2 (p \u3c 0.001) content and Prg4 re-expression reduced these markers (p \u3c 0.01). Prg4 re-expression also reduced α-SMA and PLOD2 staining in CD44-deficient mice. Conclusion: PRG4 is an endogenous antifibrotic modulator in the joint and its effect on myofibroblast formation is partially mediated by CD44, but CD44 is not required to demonstrate an antifibrotic effect in vivo
    corecore