38 research outputs found
Matter, Literacy, and English Language Teaching in an Underprivileged School in Spain
This article analyzes the processes and findings of a collaborative action research (CAR) project that aimed to analyze the potential of materiality to radically transform the way English was taught and learned in an underprivileged public school in Spain. The CAR drew on new materialisms and new literacy studies to explore the relationship between matter and English language teaching from socioeconomic, sociocultural, and technological perspectives. The main pedagogical strategy consisted of widening the quantity and quality of the material resources in the English classroom, precisely to draw a material link between the English classroom and the students' homes, communities, and the informal literacies they enacted in them. Through two cycles of inquiry, the CAR team put into practice two multimodal and artifactual workshops with a group of nine children from underprivileged, minority backgrounds. A variety of qualitative strategies were used (including classroom recordings, student interviews, and photographs) to confirm that the insights from new materialisms and new literacy studies had generated opportunities for meaningful English learning within a culturally sustaining pedagogy
ICA-Derived Respiration Using an Adaptive R-peak Detector
Breathing Rate (BR) plays a key role in health deterioration monitoring. Despite that, it has been neglected due to inadequate nursing skills and insufficient equipment. ECG signal, which is always monitored in a hospital ward, is affected by respiration which makes it a highly appealing way for the BR estimation. In addition, the latter requires accurate R-peak detection, which is a continuing concern because current methods are still inaccurate and miss heart beats. This study proposes a frequency domain BR estimation method which uses a novel real-time R-peak detector based on Empirical Mode Decomposition (EMD) and a blind source ICA for separating the respiratory signal. The originality of the BR estimation method is that it takes place in the frequency domain as opposed to some of the current methods which rely on a time domain analysis, making the estimation more accurate. Moreover, our novel QRS detector uses an adaptive threshold over a sliding window and differentiates large Q-peaks from R-peaks, facilitating a more accurate BR estimation. The performance of our methods was tested on real data from Capnobase dataset. An average mean absolute error of less than 0.7 breath per minute was achieved using our frequency domain method, compared to 15 breaths per minute of the time domain analysis. Moreover, our modified QRS detector shows comparable results to other published methods, achieving a detection rate over 99.80%
Re-Shape: A Method to Teach Data Ethics for Data Science Education
Data has become central to the technologies and services that human-computer interaction (HCI) designers make, and the ethical use of data in and through these technologies should be given critical attention throughout the design process. However, there is little research on ethics education in computer science that explicitly addresses data ethics. We present and analyze Re-Shape, a method to teach students about the ethical implications of data collection and use. Re-Shape, as part of an educational environment, builds upon the idea of cultivating care and allows students to collect, process, and visualizetheir physical movement data in ways that support critical reflection and coordinated classroom activities about data, data privacy, and human-centered systems for data science. We also use a case study of Re-Shape in an undergraduate computer science course to explore prospects and limitations of instructional designs and educational technology such as Re-Shape that leverage personal data to teach data ethics
Evidence, Content and Corroboration and the Tree of Life
We examine three critical aspects of Popperâs formulation of the âLogic of Scientific Discoveryââevidence, content and degree of corroborationâand place these concepts in the context of the Tree of Life (ToL) problem with particular reference to molecular systematics. Content, in the sense discussed by Popper, refers to the breadth and scope of existence that a hypothesis purports to explain. Content, in conjunction with the amount of available and relevant evidence, determines the testability, or potential degree of corroboration, of a statement; content distinguishes scientific hypotheses from metaphysical assertions. Degree of corroboration refers to the relative and tentative confidence assigned to one hypothesis over another, based upon the performance of each under critical tests. Here we suggest that systematists attempt to maximize content and evidence to increase the potential degree of corroboration in all phylogenetic endeavors. Discussion of this âtotal evidenceâ approach leads to several interesting conclusions about generating ToL hypotheses
Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships
Background
Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda.
Results
The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic.
Conclusions
The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect. As such, these data are likely inappropriate for investigating such ancient relationships
The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships
<p>Abstract</p> <p>Background</p> <p>The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences.</p> <p>Results</p> <p>The complete mitochondrial genome (16,089 bp) of <it>Flustra foliacea </it>(Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. <it>Flustra </it>shares long intergenic sequences with the cheilostomate ectoproct <it>Bugula</it>, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of <it>Flustra </it>differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships.</p> <p>Conclusion</p> <p>The contradictory and usually weakly supported phylogenetic reconstructions of the relationships among lophotrochozoan phyla based on mitochondrial sequences indicate that these alone do not contain enough information for a robust resolution of the relations of the lophotrochozoan phyla. The mitochondrial gene order is also not useful for inferring their phylogenetic relationships, because it is highly variable in ectoprocts, brachiopods and some other lophotrochozoan phyla. However, our study revealed several rare genomic changes like the evolution of long intergenic sequences and changes in the structure of tRNAs, which may be helpful for reconstructing ectoproct phylogeny.</p
Population genomics of marine zooplankton
Author Posting. Š The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that
distinguish many â but not all â marine zooplankton species generate similarly exceptional patterns of
population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has
slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated
species and diversity of genomic architecture, including highly-replicated genomes of many
crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is
transforming our ability to analyze population genetics and connectivity of marine zooplankton, and
providing new understanding and different answers than earlier analyses, which typically used
mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that,
despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic
populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population
connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are
critically needed to allow further examination of micro-evolution and local adaptation, including
identification of genes that show evidence of selection. These new tools will also enable further
examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to
discriminate genetic ânoiseâ in large and patchy populations from local adaptation to environmental
conditions and change.Support was provided by the
US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to
IS and MC was provided by Nord University (Norway)
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers âź99% of the euchromatic genome and is accurate to an error rate of âź1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Mitochondrial genomes and Doubly Uniparental Inheritance: new insights from Musculista senhousia sex-linked mitochondrial DNAs (Bivalvia Mytilidae)
BACKGROUND: Doubly Uniparental Inheritance (DUI) is a fascinating exception to matrilinear inheritance of mitochondrial DNA (mtDNA). Species with DUI are characterized by two distinct mtDNAs that are inherited either through females (F-mtDNA) or through males (M-mtDNA). DUI sex-linked mitochondrial genomes share several unusual features, such as additional protein coding genes and unusual gene duplications/structures, which have been related to the functionality of DUI. Recently, new evidence for DUI was found in the mytilid bivalve Musculista senhousia. This paper describes the complete sex-linked mitochondrial genomes of this species. RESULTS: Our analysis highlights that both M and F mtDNAs share roughly the same gene content and order, but with some remarkable differences. The Musculista sex-linked mtDNAs have differently organized putative control regions (CR), which include repeats and palindromic motifs, thought to provide sites for DNA-binding proteins involved in the transcriptional machinery. Moreover, in male mtDNA, two cox2 genes were found, one (M-cox2b) 123bp longer. CONCLUSIONS: The complete mtDNA genome characterization of DUI bivalves is the first step to unravel the complex genetic signals allowing Doubly Uniparental Inheritance, and the evolutionary implications of such an unusual transmission route in mitochondrial genome evolution in Bivalvia. The observed redundancy of the palindromic motifs in Musculista M-mtDNA may have a role on the process by which sperm mtDNA becomes dominant or exclusive of the male germline of DUI species. Moreover, the duplicated M-COX2b gene may have a different, still unknown, function related to DUI, in accordance to what has been already proposed for other DUI species in which a similar cox2 extension has been hypothesized to be a tag for male mitochondria