16 research outputs found

    The μO-conotoxin MrVIA inhibits voltage-gated sodium channels by associating with domain-3

    No full text
    Several families of peptide toxins from cone snails affect voltage-gated sodium (Na-V) channels: mu-conotoxins block the pore, delta-conotoxins inhibit channel inactivation, and mu O-conotoxins inhibit Na-V channels by an unknown mechanism. The only currently known mu O-conotoxins MrVIA and MrVIB from Conus marmoreus were applied to cloned rat skeletal muscle (Na(V)1.4) and brain (Na(V)1.2) sodium channels in mammalian cells. A systematic domain-swapping strategy identified the C-terminal pore loop of domain-3 as the major determinant for Na(V)1.4 being more potently blocked than Na(V)1.2 channels. mu O-conotoxins therefore show an interaction pattern with Na-V channels that is clearly different from the related mu- and delta-conotoxins, indicative of a distinct molecular mechanism of channel inhibition. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved

    Why different regions of the retina have different spectral sensitivities: A review of mechanisms and functional significance of intraretinal variability in spectral sensitivity in vertebrates

    No full text
    Vision is used in nearly all aspects of animal behavior, from prey and predator detection to mate selection and parental care. However, the light environment typically is not uniform in every direction, and visual tasks may be specific to particular parts of an animal’s field of view. These spatial differences may explain the presence of several adaptations in the eyes of vertebrates that alter spectral sensitivity of the eye in different directions. Mechanisms that alter spectral sensitivity across the retina include (but are not limited to) variations in: corneal filters, oil droplets, macula lutea, tapeta, chromophore ratios, photoreceptor classes, and opsin expression. The resultant variations in spectral sensitivity across the retina are referred to as intraretinal variability in spectral sensitivity (IVSS). At first considered an obscure and rare phenomenon, it is becoming clear that IVSS is widespread among all vertebrates, and examples have been found from every major group. This review will describe the mechanisms mediating differences in spectral sensitivity, which are in general well understood, as well as explore the functional significance of intraretinal variability, which for the most part is unclear at best

    Ocular media transmission of coral reef fish - can coral reef fish see ultraviolet light?

    Get PDF
    Many coral reef fish are beautifully coloured and the reflectance spectra of their colour patterns may include UVa wavelengths (315-400 nm) that are largely invisible to the human eye (Losey, G. S., Cronin, T. W., Goldsmith, T. H., David, H., Marshall, N. J., & McFarland, W.N, (1999). The uv visual world of fishes: a review. Journal of Fish Biology, 54, 921-943; Marshall, N. J. & Oberwinkler, J. (1999). The colourful world of the mantis shrimp. Nature, 401, 873-874). Before the possible functional significance of UV patterns can be investigated, it is of course essential to establish whether coral reef fishes can see ultraviolet light. As a means of tackling this question, in this study the transmittance of the ocular media of 211 coral reef fish species was measured. It was found that the ocular media of 50.2% of the examined species strongly absorb light of wavelengths below 400 nm, which makes the perception of UV in these fish very unlikely. The remaining 49.8% of the species studied possess ocular media that do transmit UV light, making the perception of UV possible. (C) 2001 Elsevier Science Ltd. All rights reserved

    The evolution of early vertebrate photoreceptors

    No full text
    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land

    Nekrosen, Gangrän, Geschwüre

    No full text
    corecore