1,907 research outputs found

    Possible geopotential improvement from satellite altimetry

    Get PDF
    Possible geopotential improvement from satellite altimetr

    Apollo 7 retrofire and reentry of service propulsion module. Further study of Intelsat 2 F-2 apogee burn

    Get PDF
    Photography of Apollo 7 retrofire and service propulsion module reentry and apogee burn of Intelsat 2 F-2 satellit

    Bump formation in a binary attractor neural network

    Full text link
    This paper investigates the conditions for the formation of local bumps in the activity of binary attractor neural networks with spatially dependent connectivity. We show that these formations are observed when asymmetry between the activity during the retrieval and learning is imposed. Analytical approximation for the order parameters is derived. The corresponding phase diagram shows a relatively large and stable region, where this effect is observed, although the critical storage and the information capacities drastically decrease inside that region. We demonstrate that the stability of the network, when starting from the bump formation, is larger than the stability when starting even from the whole pattern. Finally, we show a very good agreement between the analytical results and the simulations performed for different topologies of the network.Comment: about 14 page

    Monitoring young associations and open clusters with Kepler in two-wheel mode

    Full text link
    We outline a proposal to use the Kepler spacecraft in two-wheel mode to monitor a handful of young associations and open clusters, for a few weeks each. Judging from the experience of similar projects using ground-based telescopes and the CoRoT spacecraft, this program would transform our understanding of early stellar evolution through the study of pulsations, rotation, activity, the detection and characterisation of eclipsing binaries, and the possible detection of transiting exoplanets. Importantly, Kepler's wide field-of-view would enable key spatially extended, nearby regions to be monitored in their entirety for the first time, and the proposed observations would exploit unique synergies with the GAIA ESO spectroscopic survey and, in the longer term, the GAIA mission itself. We also outline possible strategies for optimising the photometric performance of Kepler in two-wheel mode by modelling pixel sensitivity variations and other systematics.Comment: 10 pages, 6 figures, white paper submitted in response to NASA call for community input for alternative science investigations for the Kepler spacecraf

    Controlling cluster synchronization by adapting the topology

    Get PDF
    We suggest an adaptive control scheme for the control of zero-lag and cluster synchronization in delay-coupled networks. Based on the speed-gradient method, our scheme adapts the topology of a network such that the target state is realized. It is robust towards different initial condition as well as changes in the coupling parameters. The emerging topology is characterized by a delicate interplay of excitatory and inhibitory links leading to the stabilization of the desired cluster state. As a crucial parameter determining this interplay we identify the delay time. Furthermore, we show how to construct networks such that they exhibit not only a given cluster state but also with a given oscillation frequency. We apply our method to coupled Stuart-Landau oscillators, a paradigmatic normal form that naturally arises in an expansion of systems close to a Hopf bifurcation. The successful and robust control of this generic model opens up possible applications in a wide range of systems in physics, chemistry, technology, and life science

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    COMPLEXITY AND PREFERENCE IN ANIMALS AND MEN *

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73010/1/j.1749-6632.1970.tb27005.x.pd

    Learning by message-passing in networks of discrete synapses

    Get PDF
    We show that a message-passing process allows to store in binary "material" synapses a number of random patterns which almost saturates the information theoretic bounds. We apply the learning algorithm to networks characterized by a wide range of different connection topologies and of size comparable with that of biological systems (e.g. n105106n\simeq10^{5}-10^{6}). The algorithm can be turned into an on-line --fault tolerant-- learning protocol of potential interest in modeling aspects of synaptic plasticity and in building neuromorphic devices.Comment: 4 pages, 3 figures; references updated and minor corrections; accepted in PR

    Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media

    Full text link
    Here we numerically study a model of excitable media, namely, a network with occasionally quiet nodes and connection weights that vary with activity on a short-time scale. Even in the absence of stimuli, this exhibits unstable dynamics, nonequilibrium phases -including one in which the global activity wanders irregularly among attractors- and 1/f noise while the system falls into the most irregular behavior. A net result is resilience which results in an efficient search in the model attractors space that can explain the origin of certain phenomenology in neural, genetic and ill-condensed matter systems. By extensive computer simulation we also address a relation previously conjectured between observed power-law distributions and the occurrence of a "critical state" during functionality of (e.g.) cortical networks, and describe the precise nature of such criticality in the model.Comment: 18 pages, 9 figure
    corecore