134 research outputs found
The mammals of Anzali Wetland in the Southern Caspian Sea
Anzali Wetland as a listed habitat in Montreux Record, was investigated for the mammal fauna during Jan. 2015 - Jan. 2016. About 165 km of water bodies and 200 km around Anzali Wetland were patrolled, respectively. By applying different methods, such as direct observation, different signs recording, using different sampling traps,nets and camera traps, twenty mammal species were identified from 5 orders and 13 families. While Wild boar,Golden Jackal and Common otter were widely distributed, Common badger, Asiatic wildcat and Jungle cat were observed in some parts of this wetland. Six rodent species were recognized in different parts of the wetland. Among four identified bat species, Nathusius’s pipistrelle has been reported only from this region in Iran. The most commonly recorded bat species was the Soprano pipistrelle, a species hereto recorded only from two Iranian localities. Two recognized species from order Eulipotyphla; Caspian shrew and a mysterious mole are important due to their narrow geographical distribution range as well as their taxonomic situation. Although there was no quantitative or qualitative data from the past, our results show that the situation of many mammal species are not suitable, and some of them are being increasingly threatened
Optimization of charge carrier extraction in colloidal quantum dots short-wave infrared photodiodes through optical engineering
Colloidal quantum dots (QDs) have attracted scientific interest for infrared (IR) optoelectronic devices due to their bandgap tunability and the ease of fabrication on arbitrary substrates. In this work, short-wave IR photodetectors based on lead sulfide (PbS) QDs with high detectivity and low dark current is demonstrated. Using a combination of time-resolved photoluminescence, carrier transport, and capacitance-voltage measurements, it is proved that the charge carrier diffusion length in the QD layer is negligible such that only photogenerated charges in the space charge region can be collected. To maximize the carrier extraction, an optical model for PbS QD-based photodiodes is developed, and through optical engineering, the cavity at the wavelength of choice is optimized. This universal optimization recipe is applied to detectors sensitive to wavelengths above 1.4 mu m, leading to external quantum efficiency of 30% and specific detectivity (D*) in the range of 10(12) Jones
Long-Term Outdoor Testing of Perovskite Mini-Modules: Effects of FACl Additives
The outdoor performance monitoring of perovskite modules over 16 weeks is reported. Two different types of active perovskite layers were studied: one type contained formamidinium chloride (FACl) halide additives and the other contained no additives with the main purpose to investigate performance trends during the outdoor exposure of those type of devices. Long-term side-by-side outdoor testing of devices with and without halide additives was not implemented in the past and merits investigation in order to determine the impact of additives on perovskite performance and stability. Although the two types of modules displayed similar initial outdoor performance characteristics, their outdoor performance evolution differed. Different degradation rates between the modules with and without additives were obtained just after field installation. In particular, the modules with additives exhibited higher performance degradation under open-circuit loading conditions between current-voltage (IV) scans. Long-term monitoring of both modules recorded a reduction of the efficiency over the course of the day with subsequent recovery overnight and in many cases during the day. The relative values of performance degradation and overnight recovery were calculated over the timespan of outdoor testing and indicated dominant normalized diurnal performance degradation in one type of modules (without FACl additives) in the range between 15–20% and in the other type of modules (with additives) 5–10%. The dominant normalized performance recovery values found were 25–30% and 5–10%, respectively. Finally, dark lock-in thermography (DLIT) and Raman studies were performed on the exposed devices and revealed differences in hotspot evolution and vibrational modes between the different types of module
Investigation of chromosomal abnormalities and microdeletion/ microduplication(s) in fifty Iranian patients with multiple congenital anomalies
Objective: Major birth defects are inborn structural or functional anomalies with long-term disability and adverse impacts on individuals, families, health-care systems, and societies. Approximately 20 of birth defects are due to chromosomal and genetic conditions. Inspired by the fact that neonatal deaths are caused by birth defects in about 20 and 10 of cases in Iran and worldwide respectively, we conducted the present study to unravel the role of chromosome abnormalities, including microdeletion/microduplication(s), in multiple congenital abnormalities in a number of Iranian patients. Materials and Methods: In this descriptive cross-sectional study, 50 sporadic patients with Multiple Congenital Anomalies (MCA) were selected. The techniques employed included conventional karyotyping, fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and array comparative genomic hybridisation (array-CGH), according to the clinical diagnosis for each patient. Results: Chromosomal abnormalities and microdeletion/microduplication(s) were observed in eight out of fifty patients (16). The abnormalities proved to result from the imbalances in chromosomes 1, 3, 12, and 18 in four of the patients. However, the other four patients were diagnosed to suffer from the known microdeletions of 22q11.21, 16p13.3, 5q35.3, and 7q11.23. Conclusion: In the present study, we report a patient with 46,XY, der(18)12/46,XY, der(18), +mar8 dn presented with MCA associated with hypogammaglobulinemia. Given the patient�s seemingly rare and highly complex chromosomal abnormality and the lack of any concise mechanism presented in the literature to justify the case, we hereby propose a novel mechanism for the formation of both derivative and ring chromosome 18. In addition, we introduce a new 12q abnormality and a novel association of an Xp22.33 duplication with 1q43q44 deletion syndrome. The phenotype analysis of the patients with chromosome abnormality would be beneficial for further phenotype-genotype correlation studies. © 2019 Royan Institute (ACECR). All rights reserved
Erratum: The genomic architecture of NLRP7 is Alu rich and predisposes to disease-associated large deletions
NLRP7 is a major gene responsible for recurrent hydatidiform moles. Here, we report 11 novel NLRP7 protein truncating variants, of which five deletions of more than 1-kb. We analyzed the transcriptional consequences of four variants. We demonstrate that one large homozygous deletion removes NLRP7 transcription start site and results in the complete absence of its transcripts in a patient in good health besides her reproductive problem. This observation strengthens existing data on the requirement of NLRP7 only for female reproduction. We show that two other variants affecting the splice acceptor of exon 6 lead to its in-frame skipping while another variant affecting the splice donor site of exon 9 leads to an in-frame insertion of 54 amino acids. Our characterization of the deletion breakpoints demonstrated that most of the breakpoints occurred within Alu repeats and the deletions were most likely mediated by microhomology events. Our data define a hotspot of Alu instability and deletions in intron 5 with six different breakpoints and rearrangements. Analysis of NLRP7 genomic sequences for repetitive elements demonstrated that Alu repeats represent 48% of its intronic sequences and these repeats seem to have been inserted into the common NLRP2/7 primate ancestor before its duplication into two genes
Transient disruption of M1 during response planning impairs subsequent offline consolidation
Transcranial magnetic stimulation (TMS) was used to probe the involvement of the left primary motor cortex (M1) in the consolidation of a sequencing skill. In particular we asked: (1) if M1 is involved in consolidation of planning processes prior to response execution (2) whether movement preparation and movement execution can undergo consolidation independently and (3) whether sequence consolidation can occur in a stimulus specific manner. TMS was applied to left M1 while subjects prepared left hand sequential finger responses for three different movement sequences, presented in an interleaved fashion. Subjects also trained on three control sequences, where no TMS was applied. Disruption of subsequent consolidation was observed, but only for sequences where subjects had been exposed to TMS during training. Further, reduced consolidation was only observed for movement preparation, not movement execution. We conclude that left M1 is causally involved in the consolidation of effective response planning for left hand movements prior to response execution, and mediates consolidation in a sequence specific manner. These results provide important new insights into the role of M1 in sequential memory consolidation and sequence response planning
Computing Expected Differential Probability of (Truncated) Differentials and Expected Linear Potential of (Multidimensional) Linear Hulls in SPN Block Ciphers
In this paper we introduce new algorithms that, based only on the independent round keys assumption, allow to practically compute the exact expected differential probability of (truncated) differentials and the expected linear potential of (multidimensional) linear hulls. That is, we can compute the exact sum of the probability or the potential of all characteristics that follow a given activity pattern. We apply our algorithms to various recent SPN ciphers and discuss the results
Reduction in Learning Rates Associated with Anterograde Interference Results from Interactions between Different Timescales in Motor Adaptation
Prior experiences can influence future actions. These experiences can not only drive adaptive changes in motor output, but they can also modulate the rate at which these adaptive changes occur. Here we studied anterograde interference in motor adaptation – the ability of a previously learned motor task (Task A) to reduce the rate of subsequently learning a different (and usually opposite) motor task (Task B). We examined the formation of the motor system's capacity for anterograde interference in the adaptive control of human reaching-arm movements by determining the amount of interference after varying durations of exposure to Task A (13, 41, 112, 230, and 369 trials). We found that the amount of anterograde interference observed in the learning of Task B increased with the duration of Task A. However, this increase did not continue indefinitely; instead, the interference reached asymptote after 15–40 trials of Task A. Interestingly, we found that a recently proposed multi-rate model of motor adaptation, composed of two distinct but interacting adaptive processes, predicts several key features of the interference patterns we observed. Specifically, this computational model (without any free parameters) predicts the initial growth and leveling off of anterograde interference that we describe, as well as the asymptotic amount of interference that we observe experimentally (R2 = 0.91). Understanding the mechanisms underlying anterograde interference in motor adaptation may enable the development of improved training and rehabilitation paradigms that mitigate unwanted interference
Principles of sensorimotor learning.
The exploits of Martina Navratilova and Roger Federer represent the pinnacle of motor learning. However, when considering the range and complexity of the processes that are involved in motor learning, even the mere mortals among us exhibit abilities that are impressive. We exercise these abilities when taking up new activities - whether it is snowboarding or ballroom dancing - but also engage in substantial motor learning on a daily basis as we adapt to changes in our environment, manipulate new objects and refine existing skills. Here we review recent research in human motor learning with an emphasis on the computational mechanisms that are involved
- …