163 research outputs found

    Modeling Semantic Encoding in a Common Neural Representational Space

    Get PDF
    Encoding models for mapping voxelwise semantic tuning are typically estimated separately for each individual, limiting their generalizability. In the current report, we develop a method for estimating semantic encoding models that generalize across individuals. Functional MRI was used to measure brain responses while participants freely viewed a naturalistic audiovisual movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic content were assigned to each imaging volume based on an annotation of the film. We constructed both conventional within-subject semantic encoding models and between-subject models where the model was trained on a subset of participants and validated on a left-out participant. Between-subject models were trained using cortical surface-based anatomical normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to project group data into an individual’s unique anatomical space via a common representational space, thus leveraging a larger volume of data for out-of-sample prediction while preserving the individual’s fine-grained functional–anatomical idiosyncrasies. Our findings demonstrate that anatomical normalization degrades the spatial specificity of between-subject encoding models relative to within-subject models. Hyperalignment, on the other hand, recovers the spatial specificity of semantic tuning lost during anatomical normalization, and yields model performance exceeding that of within-subject models

    Modeling Semantic Encoding in a Common Neural Representational Space

    Get PDF
    Encoding models for mapping voxelwise semantic tuning are typically estimated separately for each individual, limiting their generalizability. In the current report, we develop a method for estimating semantic encoding models that generalize across individuals. Functional MRI was used to measure brain responses while participants freely viewed a naturalistic audiovisual movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic content were assigned to each imaging volume based on an annotation of the film. We constructed both conventional within-subject semantic encoding models and between-subject models where the model was trained on a subset of participants and validated on a left-out participant. Between-subject models were trained using cortical surface-based anatomical normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to project group data into an individual’s unique anatomical space via a common representational space, thus leveraging a larger volume of data for out-of-sample prediction while preserving the individual’s fine-grained functional–anatomical idiosyncrasies. Our findings demonstrate that anatomical normalization degrades the spatial specificity of between-subject encoding models relative to within-subject models. Hyperalignment, on the other hand, recovers the spatial specificity of semantic tuning lost during anatomical normalization, and yields model performance exceeding that of within-subject models

    Neural Representations of Personally Familiar and Unfamiliar Faces in the Anterior Inferior Temporal Cortex of Monkeys

    Get PDF
    To investigate the neural representations of faces in primates, particularly in relation to their personal familiarity or unfamiliarity, neuronal activities were chronically recorded from the ventral portion of the anterior inferior temporal cortex (AITv) of macaque monkeys during the performance of a facial identification task using either personally familiar or unfamiliar faces as stimuli. By calculating the correlation coefficients between neuronal responses to the faces for all possible pairs of faces given in the task and then using the coefficients as neuronal population-based similarity measures between the faces in pairs, we analyzed the similarity/dissimilarity relationship between the faces, which were potentially represented by the activities of a population of the face-responsive neurons recorded in the area AITv. The results showed that, for personally familiar faces, different identities were represented by different patterns of activities of the population of AITv neurons irrespective of the view (e.g., front, 90° left, etc.), while different views were not represented independently of their facial identities, which was consistent with our previous report. In the case of personally unfamiliar faces, the faces possessing different identities but presented in the same frontal view were represented as similar, which contrasts with the results for personally familiar faces. These results, taken together, outline the neuronal representations of personally familiar and unfamiliar faces in the AITv neuronal population

    Age and the Neural Network of Personal Familiarity

    Get PDF
    BACKGROUND: Accessing information that defines personally familiar context in real-world situations is essential for the social interactions and the independent functioning of an individual. Personal familiarity is associated with the availability of semantic and episodic information as well as the emotional meaningfulness surrounding a stimulus. These features are known to be associated with neural activity in distinct brain regions across different stimulus conditions (e.g., when perceiving faces, voices, places, objects), which may reflect a shared neural basis. Although perceiving context-rich personal familiarity may appear unchanged in aging on the behavioral level, it has not yet been studied whether this can be supported by neuroimaging data. METHODOLOGY/PRINCIPAL FINDINGS: We used functional magnetic resonance imaging to investigate the neural network associated with personal familiarity during the perception of personally familiar faces and places. Twelve young and twelve elderly cognitively healthy subjects participated in the study. Both age groups showed a similar activation pattern underlying personal familiarity, predominantly in anterior cingulate and posterior cingulate cortices, irrespective of the stimulus type. The young subjects, but not the elderly subjects demonstrated an additional anterior cingulate deactivation when perceiving unfamiliar stimuli. CONCLUSIONS/SIGNIFICANCE: Although we found evidence for an age-dependent reduction in frontal cortical deactivation, our data show that there is a stimulus-independent neural network associated with personal familiarity of faces and places, which is less susceptible to aging-related changes

    Regulatory control of DNA end resection by Sae2 phosphorylation

    Get PDF
    DNA end resection plays a critical function in DNA double-strand break repair pathway choice. Resected DNA ends are refractory to end-joining mechanisms and are instead channeled to homology-directed repair. Using biochemical, genetic, and imaging methods, we show that phosphorylation of Saccharomyces cerevisiae Sae2 controls its capacity to promote the Mre11-Rad50-Xrs2 (MRX) nuclease to initiate resection of blocked DNA ends by at least two distinct mechanisms. First, DNA damage and cell cycle-dependent phosphorylation leads to Sae2 tetramerization. Second, and independently, phosphorylation of the conserved C-terminal domain of Sae2 is a prerequisite for its physical interaction with Rad50, which is also crucial to promote the MRX endonuclease. The lack of this interaction explains the phenotype of rad50S mutants defective in the processing of Spo11-bound DNA ends during meiotic recombination. Our results define how phosphorylation controls the initiation of DNA end resection and therefore the choice between the key DNA double-strand break repair mechanisms

    Social presence and dishonesty in retail

    Get PDF
    Self-service checkouts (SCOs) in retail can benefit consumers and retailers, providing control and autonomy to shoppers independent from staff, together with reduced queuing times. Recent research indicates that the absence of staff may provide the opportunity for consumers to behave dishonestly, consistent with a perceived lack of social presence. This study examined whether a social presence in the form of various instantiations of embodied, visual, humanlike SCO interface agents had an effect on opportunistic behaviour. Using a simulated SCO scenario, participants experienced various dilemmas in which they could financially benefit themselves undeservedly. We hypothesised that a humanlike social presence integrated within the checkout screen would receive more attention and result in fewer instances of dishonesty compared to a less humanlike agent. This was partially supported by the results. The findings contribute to the theoretical framework in social presence research. We concluded that companies adopting self-service technology may consider the implementation of social presence in technology applications to support ethical consumer behaviour, but that more research is required to explore the mixed findings in the current study.<br/

    Individual Differences in Response of Dorsomedial Prefrontal Cortex Predict Daily Social Behavior

    Get PDF
    The capacity to accurately infer the thoughts and intentions of other people is critical for effective social interaction, and neural activity in dorsomedial prefrontal cortex (dmPFC) has long been linked with the extent to which people engage in mental state attribution. In this study, we combined functional neuroimaging and experience sampling methodologies to test the predictive value of this neural response for daily social behaviors. We found that individuals who displayed greater activity in dmPFC when viewing social scenes spent more time around other people on a daily basis. These findings suggest a specific role for the neural mechanisms that support the capacity to mentalize in guiding individuals toward situations containing valuable social outcomes

    Visual Personal Familiarity in Amnestic Mild Cognitive Impairment

    Get PDF
    BACKGROUND: Patients with amnestic mild cognitive impairment are at high risk for developing Alzheimer's disease. Besides episodic memory dysfunction they show deficits in accessing contextual knowledge that further specifies a general concept or helps to identify an object or a person. METHODOLOGY/PRINCIPAL FINDINGS: Using functional magnetic resonance imaging, we investigated the neural networks associated with the perception of personal familiar faces and places in patients with amnestic mild cognitive impairment and healthy control subjects. Irrespective of stimulus type, patients compared to control subjects showed lower activity in right prefrontal brain regions when perceiving personally familiar versus unfamiliar faces and places. Both groups did not show different neural activity when perceiving faces or places irrespective of familiarity. CONCLUSIONS/SIGNIFICANCE: Our data highlight changes in a frontal cortical network associated with knowledge-based personal familiarity among patients with amnestic mild cognitive impairment. These changes could contribute to deficits in social cognition and may reduce the patients' ability to transition from basic to complex situations and tasks

    Abilities to explicitly and implicitly infer intentions from actions in adults with autism spectrum disorder

    Get PDF
    Previous research suggests that Autism Spectrum Disorder (ASD) might be associated with impairments on implicit but not explicit mentalizing tasks. However, such comparisons are made difficult by the heterogeneity of stimuli and the techniques used to measure mentalizing capabilities. We tested the abilities of 34 individuals (17 with ASD) to derive intentions from others’ actions during both explicit and implicit tasks and tracked their eye-movements. Adults with ASD displayed explicit but not implicit mentalizing deficits. Adults with ASD displayed typical fixation patterns during both implicit and explicit tasks. These results illustrate an explicit mentalizing deficit in adults with ASD, which cannot be attributed to differences in fixation patterns

    Motor signatures of emotional reactivity in frontotemporal dementia

    Get PDF
    Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases
    • …
    corecore