8,367 research outputs found
Siglec receptors impact mammalian lifespan by modulating oxidative stress.
Aging is a multifactorial process that includes the lifelong accumulation of molecular damage, leading to age-related frailty, disability and disease, and eventually death. In this study, we report evidence of a significant correlation between the number of genes encoding the immunomodulatory CD33-related sialic acid-binding immunoglobulin-like receptors (CD33rSiglecs) and maximum lifespan in mammals. In keeping with this, we show that mice lacking Siglec-E, the main member of the CD33rSiglec family, exhibit reduced survival. Removal of Siglec-E causes the development of exaggerated signs of aging at the molecular, structural, and cognitive level. We found that accelerated aging was related both to an unbalanced ROS metabolism, and to a secondary impairment in detoxification of reactive molecules, ultimately leading to increased damage to cellular DNA, proteins, and lipids. Taken together, our data suggest that CD33rSiglecs co-evolved in mammals to achieve a better management of oxidative stress during inflammation, which in turn reduces molecular damage and extends lifespan
Systematically Asymmetric Heliospheric Magnetic Field: Evidence for a Quadrupole Mode and Non-axisymmetry with Polarity Flip-flops
Recent studies of the heliospheric magnetic field (HMF) have detected
interesting, systematic hemispherical and longitudinal asymmetries which have a
profound significance for the understanding of solar magnetic fields. The in
situ HMF measurements since 1960s show that the heliospheric current sheet
(HCS) is systematically shifted (coned) southward during solar minimum times,
leading to the concept of a bashful ballerina. While temporary shifts can be
considerably larger, the average HCS shift (coning) angle is a few degrees,
less than the tilt of the solar rotation axis. Recent solar
observations during the last two solar cycles verify these results and show
that the magnetic areas in the northern solar hemisphere are larger and their
intensity weaker than in the south during long intervals in the late declining
to minimum phase. The multipole expansion reveals a strong quadrupole term
which is oppositely directed to the dipole term. These results imply that the
Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the
dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong
tendency to produce solar tilts that are roughly opposite in longitudinal
phase. This implies is a systematic longitudinal asymmetry and leads to a
"flip-flop" type behaviour in the dominant HMF sector whose period is about 3.2
years. This agrees very well with the similar flip-flop period found recently
in sunspots, as well as with the observed ratio of three between the activity
cycle period and the flip-flop period of sun-like stars. Accordingly, these
results require that the solar dynamo includes three modes, A0, S0 and a
non-axisymmetric mode. Obviously, these results have a great impact on solar
modelling.Comment: 13 pages, 4 figures, Solar Physics, Topical Issue of Space Climate
Symposium, in pres
Sparse-Lagrangian PDF Modelling of Silica Synthesis from Silane Jets in Vitiated Co-flows with Varying Inflow Conditions
This paper presents a comparison of experimental and numerical results for a series of turbulent reacting jets where silica nanoparticles are formed and grow due to surface growth and agglomeration. We use large-eddy simulation coupled with a multiple mapping conditioning approach for the solution of the transport equation for the joint probability density function of scalar composition and particulate size distribution. The model considers inception based on finite-rate chemistry, volumetric surface growth and agglomeration. The sub-models adopted for these particulate processes are the standard ones used by the community. Validation follows the âparadigm shiftâ approach where elastic light scattering signals (that depend on particulate number and size), OH- and SiO-LIF signals are computed from the simulation results and compared with âraw signalsâ from laser diagnostics. The sensitivity towards variable boundary conditions such as co-flow temperature, Reynolds number and precursor doping of the jet is investigated. Agreement between simulation and experiments is very good for a reference case which is used to calibrate the signals. While keeping the model parameters constant, the sensitivity of the particulate size distribution on co-flow temperature is predicted satisfactorily upstream although quantitative differences with the data exist downstream for the lowest coflow temperature case that is considered. When the precursor concentration is varied, the model predicts the correct direction of the change in signal but notable qualitative and quantitative differences with the data are observed. In particular, the measured signals show a highly non-linear variation while the predictions exhibit a square dependence on precursor doping at best. So, while the results for the reference case appear to be very good, shortcomings in the standard submodels are revealed through variation of the boundary conditions. This demonstrates the importance of testing complex nanoparticle synthesis models on a flame series to ensure that the physical trends are correctly accounted for
Lithium and aluminium carbamato derivatives of the utility amide 2, 2, 6, 6- tetramethylpiperidide
Insertion of CO2 into the metal-N bond of a series of synthetically-important alkali-metal TMP (2,2,6,6-tetramethylpiperidide) complexes has been studied. Determined by X-ray crystallography, the molecular structure of the TMEDA-solvated Li derivative shows a central 8-membered (LiOCO)2 ring lying in a chair conformation with distorted tetrahedral lithium centres. While trying to obtain crystals of a THF solvated derivative, a mixed carbonato/carbamato dodecanuclear lithium cluster was formed containing two central (CO3)2- fragments and eight O2CTMP ligands with four distinct bonding modes. A bisalkylaluminium carbamato complex has also been prepared via two different methods (CO2 insertion into a pre-formed Al-N bond and ligand transfer from the corresponding lithium reagent) which adopts a dimeric structure in the solid state
Recommendations for change in infection prevention programs and practice
Fifty years of evolution in infection prevention and control programs have involved significant accomplishments related to clinical practices, methodologies, and technology. However, regulatory mandates, and resource and research limitations, coupled with emerging infection threats such as the COVID-19 pandemic, present considerable challenges for infection preventionists. This article provides guidance and recommendations in 14 key areas. These interventions should be considered for implementation by United States health care facilities in the near future
Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway
This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel
Advanced trajectory generator for two carts with RGB-D sensor on circular rail
This paper presents a motorised circular rail that generates the motion of two carts with an RGB-D sensor each. The objective of both carts' trajectory generation is to track a person's physical rehabilitation exercises from two points of view and his/her emotional state from one of these viewpoints. The person is moving freely his/her position and posture within the circle drawn by the motorised rail. More specifically, this paper describes the calculation of trajectories for safe motion of the two carts on the motorised circular rail in detail. Lastly, a study case is offered to show the performance of the described control algorithms for trajectory generation.- This work was partially supported by Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (AEI) / European Regional Development Fund (FEDER, UE) under DPI2016-80894-R grant
Technical report: liquid overlay technique allows the generation of homogeneous osteosarcoma, glioblastoma, lung and prostate adenocarcinoma spheroids that can be used for drug cytotoxicity measurements
Introduction: The mechanisms involved in cancer initiation, progression, drug resistance, and disease recurrence are traditionally investigated through in vitro adherent monolayer (2D) cell models. However, solid malignant tumor growth is characterized by progression in three dimensions (3D), and an increasing amount of evidence suggests that 3D culture models, such as spheroids, are suitable for mimicking cancer development. The aim of this report was to reaffirm the relevance of simpler 3D culture methods to produce highly reproducible spheroids, especially in the context of drug cytotoxicity measurements.
Methods: Human A549 lung adenocarcinoma, LnCaP prostate adenocarcinoma, MNNG/HOS osteosarcoma and U251 glioblastoma cell lines were grown into spheroids for 20 days using either Liquid Overlay Technique (LOT) or Hanging Drop (HD) in various culture plates. Their morphology was examined by microscopy. Sensitivity to doxorubicin was compared between MNNG/HOS cells grown in 2D and 3D.
Results: For all cell lines studied, the morphology of spheroids generated in round-bottom multiwell plates was more repeatable than that of those generated in flat-bottom multiwell plates. HD had no significant advantage over LOT when the spheroids were cultured in round-bottom plates. Finally, the IC50 of doxorubicin on MNNG/HOS cultured in 3D was 18.8 times higher than in 2D cultures (3D IC50 = 15.07 ± 0.3 ”M; 2D IC50 = 0.8 ± 0.4 ”M; *p < 0.05).
Discussion: In conclusion, we propose that the LOT method, despite and because of its simplicity, is a relevant 3D model for drug response measurements that could be scaled up for high throughput screening
- âŠ