123 research outputs found

    Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA-Zipped Polymersome Clusters for Advanced Nanotheranostic Platform

    Get PDF
    Abstract Nanotheranostics is an emerging field that brings together nanoscale-engineered materials with biological systems providing a combination of therapeutic and diagnostic strategies. However, current theranostic nanoplatforms have serious limitations, mainly due to a mismatch between the physical properties of the selected nanomaterials and their functionalization ease, loading ability, or overall compatibility with bioactive molecules. Herein, a nanotheranostic system is proposed based on nanocompartment clusters composed of two different polymersomes linked together by DNA. Careful design and procedure optimization result in clusters segregating the therapeutic enzyme human Dopa decarboxylase (DDC) and fluorescent probes for the detection unit in distinct but colocalized nanocompartments. The diagnostic compartment provides a twofold function: trackability via dye loading as the imaging component and the ability to attach the cluster construct to the surface of cells. The therapeutic compartment, loaded with active DDC, triggers the cellular expression of a secreted reporter enzyme via production of dopamine and activation of dopaminergic receptors implicated in atherosclerosis. This two-compartment nanotheranostic platform is expected to provide the basis of a new treatment strategy for atherosclerosis, to expand versatility and diversify the types of utilizable active molecules, and thus by extension expand the breadth of attainable applications

    Statistical Model of Shape Moments with Active Contour Evolution for Shape Detection and Segmentation

    Get PDF
    This paper describes a novel method for shape representation and robust image segmentation. The proposed method combines two well known methodologies, namely, statistical shape models and active contours implemented in level set framework. The shape detection is achieved by maximizing a posterior function that consists of a prior shape probability model and image likelihood function conditioned on shapes. The statistical shape model is built as a result of a learning process based on nonparametric probability estimation in a PCA reduced feature space formed by the Legendre moments of training silhouette images. A greedy strategy is applied to optimize the proposed cost function by iteratively evolving an implicit active contour in the image space and subsequent constrained optimization of the evolved shape in the reduced shape feature space. Experimental results presented in the paper demonstrate that the proposed method, contrary to many other active contour segmentation methods, is highly resilient to severe random and structural noise that could be present in the data

    Bistability in Apoptosis by Receptor Clustering

    Get PDF
    Apoptosis is a highly regulated cell death mechanism involved in many physiological processes. A key component of extrinsically activated apoptosis is the death receptor Fas, which, on binding to its cognate ligand FasL, oligomerize to form the death-inducing signaling complex. Motivated by recent experimental data, we propose a mathematical model of death ligand-receptor dynamics where FasL acts as a clustering agent for Fas, which form locally stable signaling platforms through proximity-induced receptor interactions. Significantly, the model exhibits hysteresis, providing an upstream mechanism for bistability and robustness. At low receptor concentrations, the bistability is contingent on the trimerism of FasL. Moreover, irreversible bistability, representing a committed cell death decision, emerges at high concentrations, which may be achieved through receptor pre-association or localization onto membrane lipid rafts. Thus, our model provides a novel theory for these observed biological phenomena within the unified context of bistability. Importantly, as Fas interactions initiate the extrinsic apoptotic pathway, our model also suggests a mechanism by which cells may function as bistable life/death switches independently of any such dynamics in their downstream components. Our results highlight the role of death receptors in deciding cell fate and add to the signal processing capabilities attributed to receptor clustering.Comment: Accepted by PLoS Comput Bio

    The sound of silence:Transgene silencing in mammalian cell engineering

    Get PDF
    To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.ISSN:2405-472

    Bcl-2 inhibits apoptosis by increasing the time-to-death and intrinsic cell-to-cell variations in the mitochondrial pathway of cell death

    Get PDF
    BH3 mimetics have been proposed as new anticancer therapeutics. They target anti-apoptotic Bcl-2 proteins, up-regulation of which has been implicated in the resistance of many cancer cells, particularly leukemia and lymphoma cells, to apoptosis. Using probabilistic computational modeling of the mitochondrial pathway of apoptosis, verified by single-cell experimental observations, we develop a model of Bcl-2 inhibition of apoptosis. Our results clarify how Bcl-2 imparts its anti-apoptotic role by increasing the time-to-death and cell-to-cell variability. We also show that although the commitment to death is highly impacted by differences in protein levels at the time of stimulation, inherent stochastic fluctuations in apoptotic signaling are sufficient to induce cell-to-cell variability and to allow single cells to escape death. This study suggests that intrinsic cell-to-cell stochastic variability in apoptotic signaling is sufficient to cause fractional killing of cancer cells after exposure to BH3 mimetics. This is an unanticipated facet of cancer chemoresistance.Comment: 11 pages, In pres

    Real-Time Dynamics of Ca2+, Caspase-3/7, and Morphological Changes in Retinal Ganglion Cell Apoptosis under Elevated Pressure

    Get PDF
    Quantitative information on the dynamics of multiple molecular processes in individual live cells under controlled stress is central to the understanding of the cell behavior of interest and the establishment of reliable models. Here, the dynamics of the apoptosis regulator intracellular Ca2+, apoptosis effector caspase-3/7, and morphological changes, as well as temporal correlation between them at the single cell level, are examined in retinal gangling cell line (differentiated RGC-5 cells) undergoing apoptosis at elevated hydrostatic pressure using a custom-designed imaging platform that allows long-term real-time simultaneous imaging of morphological and molecular-level physiological changes in large numbers of live cells (beyond the field-of-view of typical microscopy) under controlled hydrostatic pressure. This examination revealed intracellular Ca2+ elevation with transient single or multiple peaks of less than 0.5 hour duration appearing at the early stages (typically less than 5 hours after the onset of 100 mmHg pressure) followed by gradual caspase-3/7 activation at late stages (typically later than 5 hours). The data reveal a strong temporal correlation between the Ca2+ peak occurrence and morphological changes of neurite retraction and cell body shrinkage. This suggests that Ca2+ elevation, through its impact on ion channel activity and water efflux, is likely responsible for the onset of apoptotic morphological changes. Moreover, the data show a significant cell-to-cell variation in the onset of caspase-3/7 activation, an inevitable consequence of the stochastic nature of the underlying biochemical reactions not captured by conventional assays based on population-averaged cellular responses. This real-time imaging study provides, for the first time, statistically significant data on simultaneous multiple molecular level changes to enable refinements and testing of models of the dynamics of mitochondria-mediated apoptosis. Further, the platform developed and the approach has direct significance to the study of a variety of signaling pathway phenomena

    An Inducible and Reversible Mouse Genetic Rescue System

    Get PDF
    Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications

    Mathematical Modelling of Cell-Fate Decision in Response to Death Receptor Engagement

    Get PDF
    Cytokines such as TNF and FASL can trigger death or survival depending on cell lines and cellular conditions. The mechanistic details of how a cell chooses among these cell fates are still unclear. The understanding of these processes is important since they are altered in many diseases, including cancer and AIDS. Using a discrete modelling formalism, we present a mathematical model of cell fate decision recapitulating and integrating the most consistent facts extracted from the literature. This model provides a generic high-level view of the interplays between NFκB pro-survival pathway, RIP1-dependent necrosis, and the apoptosis pathway in response to death receptor-mediated signals. Wild type simulations demonstrate robust segregation of cellular responses to receptor engagement. Model simulations recapitulate documented phenotypes of protein knockdowns and enable the prediction of the effects of novel knockdowns. In silico experiments simulate the outcomes following ligand removal at different stages, and suggest experimental approaches to further validate and specialise the model for particular cell types. We also propose a reduced conceptual model implementing the logic of the decision process. This analysis gives specific predictions regarding cross-talks between the three pathways, as well as the transient role of RIP1 protein in necrosis, and confirms the phenotypes of novel perturbations. Our wild type and mutant simulations provide novel insights to restore apoptosis in defective cells. The model analysis expands our understanding of how cell fate decision is made. Moreover, our current model can be used to assess contradictory or controversial data from the literature. Ultimately, it constitutes a valuable reasoning tool to delineate novel experiments

    Parameter estimate of signal transduction pathways

    Get PDF
    BACKGROUND: The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. RESULTS: Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. CONCLUSION: Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data
    corecore