39 research outputs found

    Perchlorate and Volatiles of the Brine of Lake Vida (Antarctica): Implication for the in Situ Analysis of Mars Sediments

    Get PDF
    The cold (-13.4 C), cryoencapsulated, anoxic, interstitial brine of the 27 m-thick ice of Lake Vida (Victoria Valley, Antarctica) contains 49 microgram L-1 of perchlorate and 11 microgram L-1 of chlorate. Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the exception of volatile organic sulfur compounds, most other volatiles observed were artifacts produced in the GC injector when the thermal decomposition products of oxychlorines reacted with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water with perchlorate (40 microgram L-1) showed low level of organic artifacts, reflecting carbon limitation. In order to observe sample-derived organic compounds, both in analog samples and on Mars, the molar abundance of reduced carbon in a sample must exceed those of O2 and Cl2 produced during decomposition of oxychlorines. This suggests that the abundance of compounds observed by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose that the derivatization agents stored on SAM may be used as an external source of reduced carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing the expression of more abundant and perhaps more diverse Martian organic matter

    Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica

    Get PDF
    The anoxic and freezing brine that permeates Lake Vida\u27s perennial ice below 16mcontains an abundance of very small (≤0.2-μm) particles mixed with a less abundant population of microbial cells ranging from\u3e0.2 to 1.5 μmin length. Fluorescent DNA staining, electron microscopy (EM) observations, elemental analysis, and extraction of high-molecular-weight genomic DNA indicated that a significant portion of these ultrasmall particles are cells. A continuous electron-dense layer surrounding a less electron-dense region was observed by EM, indicating the presence of a biological membrane surrounding a cytoplasm. The ultrasmall cells are 0.192±0.065 μ, with morphology characteristic of coccoid and diplococcic bacterial cells, often surrounded by iron-rich capsular structures. EM observations also detected the presence of smaller unidentified nanoparticles of 0.020 to 0.140 μmamong the brine cells. A 16S rRNA gene clone library from the brine 0.1- to 0.2-μm-size fraction revealed a relatively low-diversity assemblage of Bacteria sequences distinct from the previously reported\u3e0.2-μm-cell-size Lake Vida brine assemblage. The brine 0.1- to 0.2-μm-size fraction was dominated by the Proteobacteria-affiliated genera Herbaspirillum, Pseudoalteromonas, and Marinobacter. Cultivation efforts of the 0.1- to 0.2-μm-size fraction led to the isolation of Actinobacteria-affiliated genera Microbacterium and Kocuria. Based on phylogenetic relatedness and microscopic observations, we hypothesize that the ultrasmall cells in Lake Vida brine are ultramicrocells that are likely in a reduced size state as a result of environmental stress or life cycle-related conditions. © 2014, American Society for Microbiology

    Stratigraphy of Lake Vida, Antarctica: hydrologic implications of 27 m of ice

    Get PDF
    Lake Vida, located in Victoria Valley, is one of the largest lakes in the McMurdo dry valleys and is known to contain hypersaline liquid brine sealed below 16 m of freshwater ice. For the first time, Lake Vida was drilled to a depth of 27 m. Below 21 m the ice is marked by well-sorted sand layers up to 20 cm thick within a matrix of salty ice. From ice chemistry, isotopic composition of δ18O and δ2H, and ground penetrating radar profiles, we conclude that the entire 27 m of ice formed from surface runoff and the sediment layers represent the accumulation of surface deposits. Radiocarbon and optically stimulated luminescence dating limit the maximum age of the lower ice to 6300 14C yr BP. As the ice cover ablated downwards during periods of low surface inflow, progressive accumulation of sediment layers insulated and preserved the ice and brine beneath, analogous to the processes that preserve shallow ground ice. The repetition of these sediment layers reveals hydrologic variability in Victoria Valley during the mid- to late Holocene. Lake Vida is an exemplar site for understanding the preservation of subsurface brine, ice, and sediment in a cold desert environment

    Biogeochemical Stoichiometry of Antarctic Dry Valley Ecosystems

    Get PDF
    Among aquatic and terrestrial landscapes of the McMurdo Dry Valleys, Antarctica, ecosystem stoichiometry ranges from values near the Redfield ratios for C:N:P to nutrient concentrations in proportions far above or below ratios necessary to support balanced microbial growth. This polar desert provides an opportunity to evaluate stoichiometric approaches to understand nutrient cycling in an ecosystem where biological diversity and activity are low, and controls over the movement and mass balances of nutrients operate over 10–10⁶ years. The simple organisms (microbial and metazoan) comprising dry valley foodwebs adhere to strict biochemical requirements in the composition of their biomass, and when activated by availability of liquid water, they influence the chemical composition of their environment according to these ratios. Nitrogen and phosphorus varied significantly in terrestrial and aquatic ecosystems occurring on landscape surfaces across a wide range of exposure ages, indicating strong influences of landscape development and geochemistry on nutrient availability. Biota control the elemental ratio of stream waters, while geochemical stoichiometry (e.g., weathering, atmospheric deposition) evidently limits the distribution of soil invertebrates. We present a conceptual model describing transformations across dry valley landscapes facilitated by exchanges of liquid water and biotic processing of dissolved nutrients. We conclude that contemporary ecosystem stoichiometry of Antarctic Dry Valley soils, glaciers, streams, and lakes results from a combination of extant biological processes superimposed on a legacy of landscape processes and previous climates

    Marine pelagic ecosystems: the West Antarctic Peninsula

    Get PDF
    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Ade´lie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along theWAPand the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response

    Formation and character of an ancient 19-m ice cover and underlying trapped brine in an “ice-sealed” east Antarctic lake

    No full text
    Lake Vida, one of the largest lakes in the McMurdo Dry Valleys of Antarctica, was previously believed to be shallow (<10 m) and frozen to its bed year-round. New ice-core analysis and temperature data show that beneath 19 m of ice is a water column composed of a NaCl brine with a salinity seven times that of seawater that remains liquid below −10°C. The ice cover thickens at both its base and surface, sealing concentrated brine beneath. The ice cover is stabilized by a negative feedback between ice growth and the freezing-point depression of the brine. The ice cover contains frozen microbial mats throughout that are viable after thawing and has a history that extends to at least 2,800 (14)C years B.P., suggesting that the brine has been isolated from the atmosphere for as long. To our knowledge, Lake Vida has the thickest subaerial lake ice cover recorded and may represent a previously undiscovered end-member lacustrine ecosystem on Earth

    Effects of legacy metabolites from previous ecosystems on the environmental metabolomics of the brine of Lake Vida, East Antarctica

    No full text
    © 2018 Elsevier Ltd Lake Vida, located in a closed basin in the McMurdo Dry Valleys, East Antarctica, permanently encapsulates an interstitial anoxic, aphotic, cold (−13 °C), brine ecosystem within 27+ m of ice. Metabolically active, but cold-limited, slow-growing bacteria were detected in the brine. Lake Vida brine is derived from the evaporation of a body of water that occupied the same basin prior to ∼2800 years ago. The characteristics of this body of water changed over time and, at one point, likely resembled other modern well-studied perennial ice-covered lakes of the Dry Valleys. We characterized the dichloromethane-extractable fraction of the environmental metabolome of Lake Vida brine in order to constrain current and ancient biogeochemical processes. Analysis of the dichloromethane-extract of Lake Vida brine by gas chromatography-mass spectrometry and comprehensive multidimensional gas chromatography-time of flight-mass spectrometry reveals the presence of legacy compounds (i.e. diagenetic products of chlorophylls and carotenoids) deriving from photosynthetic algae and anaerobic, anoxygenic photosynthetic bacteria. This legacy component dilutes the environmental signal of metabolites deriving from the extant bacterial community. The persistence of legacy metabolites (paleometabolites), apparent in Lake Vida brine, is a result of the slow turnover rates of the extant bacterial population due to low metabolic activities caused by the cold limitation. Such paleometabolites may also be preserved in other cold-limited or nutrient-depleted slow-growing ecosystems. When analyzing ecosystems with low metabolic rates, the presence of legacy metabolites must first be addressed in order to confidently recognize and interpret the environmental metabolome of the extant ecosystem

    Entry approach into pristine ice-sealed lakes-Lake Vida, East Antarctica, a model ecosystem

    No full text
    Ice-sealed lakes, potentially home to novel microbiota and microbial processes, can provide a window into isolated and geologically ancient systems. These habitats are earth analogs for extraterrestrial systems that have yet to be sampled, though potentially harbor, or have harbored life at some time during their past. They are also small-scale models of the numerous sub-glacial lake systems, which have been identified across Antarctica and in Iceland. Methods are needed to sample these ecosystems with environmental stewardship in mind, in which human impact on the ecosystem is mitigated before and during sampling. This report describes an entry and sampling approach that was executed at Lake Vida, East Antarctica, a permanently ice-sealed lake that has never been sampled. Best practice sampling procedures were developed with emphasis on mitigating introduction of trace organics or microbiota to the ecosystem. The conceptual approach is transferable to other isolated pristine aquatic ecosystems on Earth and elsewhere. © 2008, by the American Society of Limnology and Oceanography, Inc

    Carbon Sequestration and Release from Antarctic Lakes: Lake Vida and West Lake Bonney (McMurdo Dry Valleys)

    No full text
    Perennial ice covers on many Antarctic lakes have resulted in high lake inorganic carbon contents. The objective of this paper was to evaluate and compare the brine and CO2 chemistries of Lake Vida (Victoria Valley) and West Lake Bonney (Taylor Valley), two lakes of the McMurdo Dry Valleys (East Antarctica), and their potential consequences during global warming. An existing geochemical model (FREZCHEM-15) was used to convert measured molarity into molality needed for the FREZCHEM model, and this model added a new algorithm that converts measured DIC into carbonate alkalinity needed for the FREZCHEM model. While quite extensive geochemical information exists for ice-covered Taylor Valley lakes, such as West Lake Bonney, only limited information exists for the recently sampled brine of \u3e25 m ice-thick Lake Vida. Lake Vida brine had a model-calculated pCO2 = 0. 60 bars at the field pH (6. 20); West Lake Bonney had a model-calculated pCO2 = 5. 23 bars at the field pH (5. 46). Despite the high degree of atmospheric CO2 supersaturation in West Lake Bonney, it remains significantly undersaturated with the gas hydrate, CO2·6H2O, unless these gas hydrates are deep in the sediment layer or are metastable having formed under colder temperatures or greater pressures. Because of lower temperatures, Lake Vida could start forming CO2·6H2O at lower pCO2 values than West Lake Bonney; but both lakes are significantly undersaturated with the gas hydrate, CO2·6H2O. For both lakes, simulation of global warming from current subzero temperatures (-13. 4 °C in Lake Vida and -4. 7 °C in West Lake Bonney) to 10 °C has shown that a major loss of solution-phase carbon as CO2 gases and carbonate minerals occurred when the temperatures rose above 0 °C and perennial ice covers would disappear. How important these Antarctic CO2 sources will be for future global warming remains to be seen. But a recent paper has shown that methane increased in atmospheric concentration due to deglaciation about 10,000 years ago. So, CO2 release from ice lakes might contribute to atmospheric gases in the future. © 2013 Springer Science+Business Media Dordrecht
    corecore