197 research outputs found

    Dynamics of the fast solar tachocline: II. Migrating field

    Full text link
    We present detailed numerical calculations of the fast solar tachocline based on the assumption that the dynamo field dominates over the dynamics of the tachocline. In the present paper of the series, we focus on three shortfalls of the earlier models. First, instead of the simple oscillating dipole poloidal field we study the more general magnetic field structures reminiscent of the butterfly diagram. The migrating field is prescribed as the observed axisymmetric radial magnetic field Stenflo (1988, 1994). Our results are in good agreement with our analitical estimate and our previous works in Forgacs-Dajka & Petrovay (2001,2002), but the polar "dip" in isorotational surfaces is strongly reduced in this case. On the other hand, a more realistic model should have a magnetic diffusivity decreasing significantly inside the radiative interior, so we also explore the effect of diffusivity and magnetic Prandtl number varying with depth. We found that the downwards decreasing magnetic diffusivity and Prandtl number have no significant effect on the solution, although the temporal variation of the tachocline thickness has decreased.Comment: 9 page

    The evolution of collision debris near the ν6\nu_6 secular resonance and its role in the origin of terrestrial water

    Full text link
    This work presents novel findings that broadens our understanding of the amount of water that can be transported to Earth. The key innovation lies in the combined usage of Smoothed Particle Hydrodynamics (SPH) and NN-body codes to assess the role of collision fragments in water delivery. We also present a method for generating initial conditions that enables the projectile to impact at the designated location on the target's surface with the specified velocity. The primary objective of this study is to simulate giant collisions between two Ceres-sized bodies by SPH near the ν6\nu_6 secular resonance and follow the evolution of the ejected debris by numerical NN-body code. With our method 6 different initial conditions for the collision were determined and the corresponding impacts were simulated by SPH. Examining the orbital evolution of the debris ejected after collisions, we measured the amount of water delivered to Earth, which is broadly 0.001 ocean equivalents of water, except in one case where one large body transported 7\% oceans of water to the planet. Based on this, and taking into account the frequency of collisions, the amount of delivered water varies between 1.2 and 8.3 ocean's worth of water, depending on the primordial disk mass. According to our results, the prevailing external pollution model effectively accounts for the assumed water content on Earth, whether it's estimated at 1 or 10 ocean's worth of water.Comment: 15 pages, 13 figure

    Dynamics of the fast solar tachocline: I. Dipolar field

    Full text link
    One possible scenario for the origin of the solar tachocline, known as the "fast tachocline", assumes that the turbulent diffusivity exceeds eta>10^9 cm^2/s. In this case the dynamics will be governed by the dynamo-generated oscillatory magnetic field on relatively short timescales. Here, for the first time, we present detailed numerical models for the fast solar tachocline with all components of the magnetic field calculated explicitly, assuming axial symmetry and a constant turbulent diffusivity eta and viscosity nu. We find that a sufficiently strong oscillatory poloidal field with dipolar latitude dependence at the tachocline-convective zone boundary is able to confine the tachocline. Exploring the three-dimensional parameter space defined by the viscosity in the range log(nu)=9-11, the magnetic Prandtl number in the range Prm=0.1-10, and the meridional flow amplitude (-3 to +3 cm/s), we also find that the confining field strength B_conf, necessary to reproduce the observed thickness of the tachocline, increases with viscosity nu, with magnetic Prandtl number nu/eta, and with equatorward meridional flow speed. Nevertheless, the resulting B_conf values remain quite reasonable, in the range 10^3-10^4 G, for all parameter combinations considered here. The thickness of the tachocline shows a marked dependence on both time and latitude. A comparison with seismic constraints suggests that best agreement with our models is achieved for the highest values of nu and Prm considered here.Comment: 11 page

    On the equivalence between 2D Yukawa and Gross-Neveu models

    Full text link
    We study numerically on the lattice the 2D Yukawa model with the U(1) chiral symmetry and NFN_F = 16 at infinite scalar field self-coupling. The scaling behaviour of the fermion mass, as the Yukawa coupling approaches zero, is analysed using the mean field method. It is found to agree with that of the Gross-Neveu model with the same symmetry and NFN_F. The results suggest that the 2D Yukawa models belong to the universality class of the Gross-Neveu models not only at weak scalar field self-coupling but also for a broad range of the bare parameters which is not accessible to the 1/NF1/N_F expansion. New universality classes might arise at the crossover to the spin model universality class, however.Comment: 18 pages, Juelich HLRZ 111/9

    A fast method to identify mean motion resonances

    Get PDF
    The identification of mean motion resonances in exoplanetary systems or in the Solar System might be cumbersome when several planets and large number of smaller bodies are to be considered. Based on the geometrical meaning of the resonance variable, an efficient method is introduced and described here, by which mean motion resonances can be easily find without any a priori knowledge on them. The efficiency of this method is clearly demonstrated by using known exoplanets engaged in mean motion resonances, and also some members of different families of asteroids and Kuiper-belt objects being in mean motion resonances with Jupiter and Neptune respectively.Comment: 7 pages, 13 figures, accepted by Monthly Notices of the Royal Astronomical Societ

    A BABCOCK-LEIGHTON SOLAR DYNAMO MODEL WITH MULTI-CELLULAR MERIDIONAL CIRCULATION IN ADVECTION- AND DIFFUSION-DOMINATED REGIMES

    Get PDF
    Babcock-Leighton type solar dynamo models with single-celled meridional circulation are successful in reproducing many solar cycle features. Recent observations and theoretical models of meridional circulation do not indicate a single-celled flow pattern. We examine the role of complex multi-cellular circulation patterns in a Babcock-Leighton solar dynamo in advection- and diffusion-dominated regimes. We show from simulations that presence of a weak, second, high-latitude reverse cell speeds up the cycle and slightly enhances the poleward branch in butterfly diagram, whereas the presence of a second cell in depth reverses the tilt of butterfly wing to an anti-solar type. A butterfly diagram constructed from middle of convection zone yields a solar-like pattern, but this may be difficult to realize in the Sun because of magnetic buoyancy effects. Each of the above cases behaves similarly in higher and lower magnetic diffusivity regimes. However, our dynamo with a meridional circulation containing four cells in latitude behaves distinctly differently in the two regimes, producing solar-like butterfly diagrams with fast cycles in the higher diffusivity regime, and complex branches in butterfly diagrams in the lower diffusivity regime. We also find that dynamo solutions for a four-celled pattern, two in radius and two in latitude, prefer to quickly relax to quadrupolar parity if the bottom flow-speed is strong enough, of similar order of magnitude as the surface flow-speed.Comment: 40 pages, 19 figures, accepted in Ap

    Long-term variation in distribution of sunspot groups

    Get PDF
    We studied the relation between the distribution of sunspot groups and the Gleissberg cycle. As the magnetic field is related to the area of the sunspot groups, we used area-weighted sunspot group data. On the one hand, we confirm the previously reported long-term cyclic behaviour of the sum of the northern and southern sunspot group mean latitudes, although we found a somewhat longer period (P~104 years). We introduced the difference between the ensemble average area of sunspot groups for the two hemispheres, which turns out to show similar behaviour. We also investigated a further aspect of the Gleissberg cycle where while in the 19th century the consecutive Schwabe cycles are sharply separated from each other, one century later the cycles overlap each other more and more.Comment: 4 page

    Resonant excitations of the 't Hooft-Polyakov monopole

    Full text link
    The spherically symmetric magnetic monopole in an SU(2) gauge theory coupled to a massless Higgs field is shown to possess an infinite number of resonances or quasinormal modes. These modes are eigenfunctions of the isospin 1 perturbation equations with complex eigenvalues, En=ωniγnE_n=\omega_n-i\gamma_n, satisfying the outgoing radiation condition. For nn\to\infty, their frequencies ωn\omega_n approach the mass of the vector boson, MWM_W, while their lifetimes 1/γn1/\gamma_n tend to infinity. The response of the monopole to an arbitrary initial perturbation is largely determined by these resonant modes, whose collective effect leads to the formation of a long living breather-like excitation characterized by pulsations with a frequency approaching MWM_W and with an amplitude decaying at late times as t5/6t^{-5/6}.Comment: 4 page

    Computation of the radiation amplitude of oscillons

    Get PDF
    The radiation loss of small amplitude oscillons (very long-living, spatially localized, time dependent solutions) in one dimensional scalar field theories is computed in the small-amplitude expansion analytically using matched asymptotic series expansions and Borel summation. The amplitude of the radiation is beyond all orders in perturbation theory and the method used has been developed by Segur and Kruskal in Phys. Rev. Lett. 58, 747 (1987). Our results are in good agreement with those of long time numerical simulations of oscillons.Comment: 22 pages, 9 figure

    On the compatibility of a flux transport dynamo with a fast tachocline scenario

    Get PDF
    The compatibility of the fast tachocline scenario with a flux transport dynamo model is explored. We employ a flux transport dynamo model coupled with simple feedback formulae relating the thickness of the tachocline to the amplitude of the magnetic field or to the Maxwell stress. The dynamo model is found to be robust against the nonlinearity introduced by this simplified fast tachocline mechanism. Solar-like butterfly diagrams are found to persist and, even without any parameter fitting, the overall thickness of the tachocline is well within the range admitted by helioseismic constraints. In the most realistic case of a time and latitude dependent tachocline thickness linked to the value of the Maxwell stress, both the thickness and its latitude dependence are in excellent agreement with seismic results. In the nonparametric models, cycle related temporal variations in tachocline thickness are somewhat larger than admitted by helioseismic constraints; we find, however, that introducing a further parameter into our feedback formula readily allows further fine tuning of the thickness variations.Comment: Accepted in Solar Physic
    corecore