132 research outputs found

    Environmental enrichment promotes resilience to neuropathic pain-induced depression and correlates with decreased excitability of the anterior cingulate cortex.

    Get PDF
    Depression is a common comorbidity of chronic pain with many patients being affected. However, efficient pharmacological treatment strategies are still lacking. Therefore, it is desirable to find additional alternative approaches. Environmental enrichment has been suggested as a method to alleviate pain-induced depression. However, the neuronal mechanisms of its beneficial effects are still elusive. The anterior cingulate cortex (ACC) plays a central role in processing pain-related negative affect and chronic pain-induced plasticity in this region correlates with depressive symptoms. We studied the consequences of different durations of environmental enrichment on pain sensitivity and chronic pain-induced depression-like behaviors in a mouse model of neuropathic pain. Furthermore, we correlated the behavioral outcomes to the activity levels of pyramidal neurons in the ACC by analyzing their electrophysiological properties ex vivo. We found that early exposure to an enriched environment alone was not sufficient to cause resilience against pain-induced depression-like symptoms. However, extending the enrichment after the injury prevented the development of depression and reduced mechanical hypersensitivity. On the cellular level, increased neuronal excitability was associated with the depressive phenotype that was reversed by the enrichment. Therefore, neuronal excitability in the ACC was inversely correlated to the extended enrichment-induced resilience to depression. These results suggest that the improvement of environmental factors enhanced the resilience to developing chronic pain-related depression. Additionally, we confirmed the association between increased neuronal excitability in the ACC and depression-like states. Therefore, this non-pharmacological intervention could serve as a potential treatment strategy for comorbid symptoms of chronic pain

    Structure and dynamics of aqueous 2-propanol: a THz-TDS, NMR and neutron diffraction study.

    Get PDF
    Aqueous liquid mixtures, in particular, those involving amphiphilic species, play an important role in many physical, chemical and biological processes. Of particular interest are alcohol/water mixtures; however, the structural dynamics of such systems are still not fully understood. Herein, a combination of terahertz time-domain spectroscopy (THz-TDS) and NMR relaxation time analysis has been applied to investigate 2-propanol/water mixtures across the entire composition range; while neutron diffraction studies have been carried out at two specific concentrations. Excellent agreement is seen between the techniques with a maximum in both the relative absorption coefficient and the activation energy to molecular motion occurring at ∼90 mol% H2O. Furthermore, this is the same value at which well-established excess thermodynamic functions exhibit a maximum/minimum. Additionally, both neutron diffraction and THz-TDS have been used to provide estimates of the size of the hydration shell around 2-propanol in solution. Both methods determine that between 4 and 5 H2O molecules per 2-propanol are found in the 2-propanol/water clusters at 90 mol% H2O. Based on the acquired data, a description of the structure of 2-propanol/water across the composition range is presented.The authors would like to acknowledge CASTech (EPSRC grant EP/G011397/1), RCUK Basic Technology Grant (EP/E048811/1), STFC for beamtime allocation (RB910286) and Jon Mitchell (Cambridge) for valuable discussions.This is the final version of the article. It was first available from RSC via http://dx.doi.org/10.1039/C5CP01132

    Creative methods: problematics for inquiry and pedagogy in health and social care

    Get PDF
    This article provides an overview of initial discussions emerging from the Creative Methods Network, an informal organisation concerned with the use of the creative arts in research, teaching and practice in health and social care. Key issues are presented and contextualised with regard to the current conditions in which health and social care research and education is practised. Our own discussions have come to question the seeming dominance of governance within professional education programmes in which there is a primary focus on developing technical skill and capacity. Such governance often extends itself to the measurement of the implementation of these technical skills and this is set against concerns about the absence of creativity and the humanities in the educational programmes of caring for human beings. Consequently, the article reflects a view that the use of the creative arts and humanities in the education of the human caring professions is being eroded away in favour of technical-rational reasoning. It is argued that this then presents an important problem manifested in an emphasis on established and quantifiable knowledge transfer which inhibits other forms of knowledge generation. For the purposes of this discussion we have viewed this problem through the lenses offered by Foucault and Bourdieu

    The Disulfide Bonds in Glycoprotein E2 of Hepatitis C Virus Reveal the Tertiary Organization of the Molecule

    Get PDF
    Hepatitis C virus (HCV), a major cause of chronic liver disease in humans, is the focus of intense research efforts worldwide. Yet structural data on the viral envelope glycoproteins E1 and E2 are scarce, in spite of their essential role in the viral life cycle. To obtain more information, we developed an efficient production system of recombinant E2 ectodomain (E2e), truncated immediately upstream its trans-membrane (TM) region, using Drosophila melanogaster cells. This system yields a majority of monomeric protein, which can be readily separated chromatographically from contaminating disulfide-linked aggregates. The isolated monomeric E2e reacts with a number of conformation-sensitive monoclonal antibodies, binds the soluble CD81 large external loop and efficiently inhibits infection of Huh7.5 cells by infectious HCV particles (HCVcc) in a dose-dependent manner, suggesting that it adopts a native conformation. These properties of E2e led us to experimentally determine the connectivity of its 9 disulfide bonds, which are strictly conserved across HCV genotypes. Furthermore, circular dichroism combined with infrared spectroscopy analyses revealed the secondary structure contents of E2e, indicating in particular about 28% β-sheet, in agreement with the consensus secondary structure predictions. The disulfide connectivity pattern, together with data on the CD81 binding site and reported E2 deletion mutants, enabled the threading of the E2e polypeptide chain onto the structural template of class II fusion proteins of related flavi- and alphaviruses. The resulting model of the tertiary organization of E2 gives key information on the antigenicity determinants of the virus, maps the receptor binding site to the interface of domains I and III, and provides insight into the nature of a putative fusogenic conformational change

    Molybdenum (Mo) increases endogenous phenolics, proline and photosynthetic pigments and the phytoremediation potential of the industrially important plant Ricinus communis L. for removal of cadmium from contaminated soil.

    Get PDF
    Cadmium (Cd) in agricultural soil negatively affects crops yield and compromises food safety. Remediation of polluted soil is necessary for the re-establishment of sustainable agriculture and to prevent hazards to human health and environmental pollution. Phytoremediation is a promising technology for decontamination of polluted soil. The present study investigated the effect of molybdenum (Mo) (0.5, 1.0 and 2.0 ppm) on endogenous production of total phenolics and free proline, plant biomass and photosynthetic pigments in Ricinus communis plants grown in Cd (25, 50 and 100 ppm) contaminated soils and the potential for Cd phytoextraction. Mo was applied via seed soaking, soil addition and foliar spray. Foliar sprays significantly increased plant biomass, Cd accumulation and bioconcentration. Phenolic concentrations showed significantly positive correlations with Cd accumulation in roots (R 2 = 0.793, 0.807 and 0.739) and leaves (R 2 = 0.707, 721 and 0.866). Similarly, proline was significantly positively correlated with Cd accumulation in roots (R 2 = 0.668, 0.694 and 0.673) and leaves (R 2 = 0.831, 0.964 and 0.930). Foliar application was found to be the most effective way to deliver Mo in terms of increase in plant growth, Cd accumulation and production of phenolics and proline

    Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin

    Get PDF
    A growing number of solved protein structures display an elongated structural domain, denoted here as alpha-rod, composed of stacked pairs of anti-parallel alpha-helices. Alpha-rods are flexible and expose a large surface, which makes them suitable for protein interaction. Although most likely originating by tandem duplication of a two-helix unit, their detection using sequence similarity between repeats is poor. Here, we show that alpha-rod repeats can be detected using a neural network. The network detects more repeats than are identified by domain databases using multiple profiles, with a low level of false positives (<10%). We identify alpha-rod repeats in approximately 0.4% of proteins in eukaryotic genomes. We then investigate the results for all human proteins, identifying alpha-rod repeats for the first time in six protein families, including proteins STAG1-3, SERAC1, and PSMD1-2 & 5. We also characterize a short version of these repeats in eight protein families of Archaeal, Bacterial, and Fungal species. Finally, we demonstrate the utility of these predictions in directing experimental work to demarcate three alpha-rods in huntingtin, a protein mutated in Huntington's disease. Using yeast two hybrid analysis and an immunoprecipitation technique, we show that the huntingtin fragments containing alpha-rods associate with each other. This is the first definition of domains in huntingtin and the first validation of predicted interactions between fragments of huntingtin, which sets up directions toward functional characterization of this protein. An implementation of the repeat detection algorithm is available as a Web server with a simple graphical output: http://www.ogic.ca/projects/ard. This can be further visualized using BiasViz, a graphic tool for representation of multiple sequence alignments

    Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1

    Get PDF
    To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols
    • …
    corecore