407 research outputs found

    Unusual Complexes of P(CH)3 with FH, ClH, and ClF

    Get PDF
    © 2020 by the authors.Ab initio MP2/aug’-cc-pVTZ calculations have been performed to determine the structures and binding energies of complexes formed by phosphatetrahedrane, P(CH)3, and HF, HCl, and ClF. Four types of complexes exist on the potential energy surfaces. Isomers A form at the P atom near the end of a P-C bond, B at a C-C bond, C at the centroid of the C-C-C ring along the C3 symmetry axis, and D at the P atom along the C3 symmetry axis. Complexes A and B are stabilized by hydrogen bonds when FH and ClH are the acids, and by halogen bonds when ClF is the acid. In isomers C, the dipole moments of the two monomers are favorably aligned but in D the alignment is unfavorable. For each of the monomers, the binding energies of the complexes decrease in the order A > B > C > D. The most stabilizing Symmetry Adapted Perturbation Theory (SAPT) binding energy component for the A and B isomers is the electrostatic interaction, while the dispersion interaction is the most stabilizing term for C and D. The barriers to converting one isomer to another are significantly higher for the A isomers compared to B. Equation of motion coupled cluster singles and doubles (EOM-CCSD) intermolecular coupling constants J(X-C) are small for both B and C isomers. J(X-P) values are larger and positive in the A isomers, negative in the B isomers, and have their largest positive values in the D isomers. Intramolecular coupling constants 1J(P-C) experience little change upon complex formation, except in the halogen-bonded complex FCl:P(CH3) AThis work was carried out with financial support from the Ministerio de Ciencia, Innovación y Universidades of Spain (Project No. PGC2018–094644-B-C22) and Comunidad Autónoma de Madrid (P2018/EMT–4329 AIRTEC-CM)

    Niche partitioning of feather mites within a seabird host, Calonectris borealis

    Get PDF
    According to classic niche theory, species can coexist in heterogeneous environments by reducing interspecific competition via niche partitioning, e.g. trophic or spatial partitioning. However, support for the role of competition on niche partitioning remains controversial. Here, we tested for spatial and trophic partitioning in feather mites, a diverse and abundant group of arthropods. We focused on the two dominant mite species, Microspalax brevipes and Zachvatkinia ovata, inhabiting flight feathers of the Cory's shearwater, Calonectris borealis. We performed mite counts across and within primary and tail feathers on free-living shearwaters breeding on an oceanic island (Gran Canaria, Canary Islands). We then investigated trophic relationships between the two mite species and the host using stable isotope analyses of carbon and nitrogen on mite tissues and potential host food sources. The distribution of the two mite species showed clear spatial segregation among feathers; M. brevipes showed high preference for the central wing primary feathers, whereas Z. ovata was restricted to the two outermost primaries. Morphological differences between M. brevipes and Z. ovata support an adaptive basis for the spatial segregation of the two mite species. However, the two mites overlap in some central primaries and statistical modeling showed that Z. ovata tends to outcompete M. brevipes. Isotopic analyses indicated similar isotopic values for the two mite species and a strong correlation in carbon signatures between mites inhabiting the same individual host suggesting that diet is mainly based on shared host-associated resources. Among the four candidate tissues examined (blood, feather remains, skin remains and preen gland oil), we conclude that the diet is most likely dominated by preen gland oil, while the contribution of exogenous material to mite diets is less marked. Our results indicate that ongoing competition for space and resources plays a central role in structuring feather mite communities. They also illustrate that symbiotic infracommunities are excellent model systems to study trophic ecology, and can improve our understanding of mechanisms of niche differentiation and species coexistence

    Ecology of Phlebotomine Sand Flies in the Rural Community of Mont Rolland (Thiès Region, Senegal): Area of Transmission of Canine Leishmaniasis

    Get PDF
    BACKGROUND: Different epidemiological studies previously indicated that canine leishmaniasis is present in the region of Thiès (Senegal). However, the risks to human health, the transmission cycle and particularly the implicated vectors are unknown. METHODOLOGY/PRINCIPAL FINDINGS: To improve our knowledge on the population of phlebotomine sand flies and the potential vectors of canine leishmaniasis, sand flies were collected using sticky traps, light traps and indoor spraying method using pyrethroid insecticides in 16 villages of the rural community of Mont Rolland (Thiès region) between March and July 2005. The 3788 phlebotomine sand flies we collected (2044 males, 1744 females) were distributed among 9 species of which 2 belonged to the genus Phlebotomus: P. duboscqi (vector of cutaneous leishmaniasis in Senegal) and P. rodhaini. The other species belonged to the genus Sergentomyia: S. adleri, S. clydei, S. antennata, S. buxtoni, S. dubia, S. schwetzi and S. magna. The number of individuals and the species composition differed according to the type of trap, suggesting variable, species-related degrees of endophily or exophily. The two species of the genus Phlebotomus were markedly under-represented in comparison to the species of the genus Sergentomyia. This study also shows a heterogeneous spatial distribution within the rural community that could be explained by the different ecosystems and particularly the soil characteristics of this community. Finally, the presence of the S. dubia species appeared to be significantly associated with canine leishmaniasis seroprevalence in dogs. CONCLUSIONS/SIGNIFICANCE: Our data allow us to hypothesize that the species of the genus Sergentomyia and particularly the species S. dubia and S. schwetzi might be capable of transmitting canine leishmaniasis. These results challenge the dogma that leishmaniasis is exclusively transmitted by species of the genus Phlebotomus in the Old World. This hypothesis should be more thoroughly evaluated

    Let’s not forget tautomers

    Get PDF
    A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments

    Synthesis of γ-, δ-, and ε-Lactams by Asymmetric Transfer Hydrogenation of N-(tert-Butylsulfinyl)iminoesters

    Get PDF
    Highly enantiomerically enriched γ- and δ-lactams have been prepared by a simple and very efficient procedure that involves the asymmetric transfer hydrogenation of N-(tert-butylsulfinyl)iminoesters followed by desulfinylation of the nitrogen atom and spontaneous cyclization to the desired lactams during the basic workup procedure. Five- and six-membered ring lactams bearing aromatic, heteroaromatic, and aliphatic substituents have been obtained in very high yields and ee’s up to >99%. A slight modification of the procedure also allowed the preparation of ε-lactams in good yields and very high enantioselectivities. Both enantiomers of the final lactams could be prepared with equal efficiency by changing the absolute configuration of the sulfinyl chiral auxiliary
    corecore