612 research outputs found

    Ethical governance is essential to building trust in robotics and artificial intelligence systems

    Get PDF
    © 2018 The Author(s) Published by the Royal Society. All rights reserved. This paper explores the question of ethical governance for robotics and artificial intelligence (AI) systems. We outline a roadmap-which links a number of elements, including ethics, standards, regulation, responsible research and innovation, and public engagement-as a framework to guide ethical governance in robotics and AI. We argue that ethical governance is essential to building public trust in robotics and AI, and conclude by proposing five pillars of good ethical governance. This article is part of the theme issue 'Governing artificial intelligence: ethical, legal, and technical opportunities and challenges'

    In situ monitoring of corrosion processes by coupled micro-XRF/micro-XRD mapping to understand the degradation mechanisms of reinforcing bars in hydraulic binders from historic monuments

    Get PDF
    International audienceHistoric monuments have been partly built since antiquity with iron or steel reinforcements sealed in mortars or hydraulic binders. But the presence of chloride in the environment can weaken the structures due to the corrosion of these metallic parts, leading to the cracking of the binder. In this context, in order to better understand the first steps of these corrosion mechanisms a chemical cell was designed to operate in situ analyses of the phases precipitated when a chlorinated solution is introduced in the vicinity of the bar. The chemical and structural characterization (micro-XRF and micro-XRD respectively) was performed under synchrotron radiation at the SOLEIL-DiffAbs beamline. Moreover, complementary SEM-EDS analyses were carried out before and after the in situ cell experiment in order to determine the final localisation of the corrosion products inside the crack network. The results show that iron can spread up to 1 mm away from the metallic bar inside the pores of the binder after 44 h of corrosion. Moreover, in accordance with laboratory experiments conducted in solution in the presence of Fe2+ and Cl- ions the reaction pathways conduct to the successive formation of an intermediate Fe(ii)-Fe(iii) chlorinated green rust which transforms into ferric oxyhydroxides such as akaganeite or goethite depending on the local concentration of iron

    Experimental (n,γ\gamma) cross sections of the p-process nuclei 74^{74}Se and 84^{84}Sr

    Get PDF
    The nucleosynthesis of elements beyond iron is dominated by the s and r processes. However, a small amount of stable isotopes on the proton-rich side cannot be made by neutron capture and are thought to be produced by photodisintegration reactions on existing seed nuclei in the so-called "p process". So far most of the p-process reactions are not yet accessible by experimental techniques and have to be inferred from statistical Hauser-Feshbach model calculations. The parametrization of these models has to be constrained by measurements on stable proton-rich nuclei. A series of (n,γ\gamma) activation measurements, related by detailed balance to the respective photodisintegrations, were carried out at the Karlsruhe Van de Graaff accelerator using the 7^7Li(p,n)7^7Be source for simulating a Maxwellian neutron distribution of kT= 25 keV. First results for the experimental (n,γ\gamma) cross sections of the light p nuclei 74^{74}Se and 84^{84}Sr are reported. These experimental values were used for an extrapolation to the Maxwellian averaged cross section at 30 keV, 30_{30}, yielding 271±\pm15 mb for 74^{74}Se, and 300±\pm17 mb for the total capture cross section of 84^{84}Sr. The partial cross section to the isomer in 85^{85}Sr was found to be 190±\pm10 mb.Comment: 10 pages, 5 figure

    The s Process: Nuclear Physics, Stellar Models, Observations

    Full text link
    Nucleosynthesis in the s process takes place in the He burning layers of low mass AGB stars and during the He and C burning phases of massive stars. The s process contributes about half of the element abundances between Cu and Bi in solar system material. Depending on stellar mass and metallicity the resulting s-abundance patterns exhibit characteristic features, which provide comprehensive information for our understanding of the stellar life cycle and for the chemical evolution of galaxies. The rapidly growing body of detailed abundance observations, in particular for AGB and post-AGB stars, for objects in binary systems, and for the very faint metal-poor population represents exciting challenges and constraints for stellar model calculations. Based on updated and improved nuclear physics data for the s-process reaction network, current models are aiming at ab initio solution for the stellar physics related to convection and mixing processes. Progress in the intimately related areas of observations, nuclear and atomic physics, and stellar modeling is reviewed and the corresponding interplay is illustrated by the general abundance patterns of the elements beyond iron and by the effect of sensitive branching points along the s-process path. The strong variations of the s-process efficiency with metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte

    How the Replica-Symmetry-Breaking Transition Looks Like in Finite-Size Simulations

    Full text link
    Finite-size effects in the mean-field Ising spin glass and the mean-field three-state Potts glass are investigated by Monte Carlo simulations. In the thermodynamic limit, each model is known to exhibit a continuous phase transition into the ordered state with a full and a one-step replica-symmetry breaking (RSB), respectively. In the Ising case, Binder parameter g calculated for various finite sizes remains positive at any temperature and crosses at the transition point, while in the Potts case g develops a negative dip without showing a crossing in the g>0 region. By contrast, non-self averaging parameters always remain positive and show a clear crossing at the transition temperature in both cases. Our finding suggests that care should be taken in interpreting the numerical data of the Binder parameter, particularly when the system exhibits a one-step-like RSB.Comment: 7 pages, 8 figure

    Exactly Solvable Models: The Road Towards a Rigorous Treatment of Phase Transitions in Finite Systems

    Full text link
    We discuss exact analytical solutions of a variety of statistical models recently obtained for finite systems by a novel powerful mathematical method, the Laplace-Fourier transform. Among them are a constrained version of the statistical multifragmentation model, the Gas of Bags Model and the Hills and Dales Model of surface partition. Thus, the Laplace-Fourier transform allows one to study the nuclear matter equation of state, the equation of state of hadronic and quark gluon matter and surface partitions on the same footing. A complete analysis of the isobaric partition singularities of these models is done for finite systems. The developed formalism allows us, for the first time, to exactly define the finite volume analogs of gaseous, liquid and mixed phases of these models from the first principles of statistical mechanics and demonstrate the pitfalls of earlier works. The found solutions may be used for building up a new theoretical apparatus to rigorously study phase transitions in finite systems. The strategic directions of future research opened by these exact results are also discussed.Comment: Contribution to the ``World Consensus Initiative III, Texas A & M University, College Station, Texas, USA, February 11-17, 2005, 21

    Neutron flux and spectrum in the Dresden Felsenkeller underground facility studied by moderated 3^3He counters

    Get PDF
    Ambient neutrons may cause significant background for underground experiments. Therefore, it is necessary to investigate their flux and energy spectrum in order to devise a proper shielding. Here, two sets of altogether ten moderated 3^3He neutron counters are used for a detailed study of the ambient neutron background in tunnel IV of the Felsenkeller facility, underground below 45 meters of rock in Dresden/Germany. One of the moderators is lined with lead and thus sensitive to neutrons of energies higher than 10 MeV. For each 3^3He counter-moderator assembly, the energy dependent neutron sensitivity was calculated with the FLUKA code. The count rates of the ten detectors were then fitted with the MAXED and GRAVEL packages. As a result, both the neutron energy spectrum from 10−9^{-9} MeV to 300 MeV and the flux integrated over the same energy range were determined experimentally. The data show that at a given depth, both the flux and the spectrum vary significantly depending on local conditions. Energy integrated fluxes of (0.61±0.05)(0.61 \pm 0.05), (1.96±0.15)(1.96 \pm 0.15), and (4.6±0.4)×10−4(4.6 \pm 0.4) \times 10^{-4} cm−2^{-2} s−1^{-1}, respectively, are measured for three sites within Felsenkeller tunnel IV which have similar muon flux but different shielding wall configurations. The integrated neutron flux data and the obtained spectra for the three sites are matched reasonably well by FLUKA Monte Carlo calculations that are based on the known muon flux and composition of the measurement room walls.Comment: 10 figures, 4 tables; to be published in Phys. Rev.
    • …
    corecore