155 research outputs found

    Hyponatremia revisited: Translating physiology to practice

    Get PDF
    The complexity of hyponatremia as a clinical problem is likely caused by the opposite scenarios that accompany this electrolyte disorder regarding pathophysiology (depletional versus dilutional hyponatremia, high versus low vasopressin levels) and therapy (rapid correction to treat cerebral edema versus slow correction to prevent osmotic demyelination, fluid restriction versus fluid resuscitation). For a balanced differentiation between these opposites, an understanding of the pathophysiology of hyponatremia is required. Therefore, in this review an attempt is made to translate the physiology of water balance regulation to strategies that improve the clinical management of hyponatremia. A physiology-based approach to the patient with hyponatremia is presented, first addressing the possibility of acute hyponatremia, and then asking if and if so why vasopressin is secreted non-osmotically. Additional diagnostic recommendations are not to rely too heavily of the assessment of the extracellular fluid volume, to regard the syndrome of inappropriate antidiuresis as a diagnosis of exclusion, and to rationally investigate the pathophysiology of hyponatremia rather than to rely on isolated laboratory values with arbitrary cutoff values. The features of the major hyponatremic disorders are discussed, including diuretic-induced hyponatremia, adrenal and pituitary insufficiency, the syndrome of inappropriate antidiuresis, cerebral salt wasting, and exercise-associated hyponatremia. The treatment of hyponatremia is reviewed from simple saline solutions to the recently introduced vasopressin receptor antagonists, including their promises and limitations. Given the persistently high rates of hospital-acquired hyponatremia, the importance of improving the management of hyponatremia seems both necessary and achievable. Copyrigh

    High-resolution X-ray spectroscopy and imaging of supernova remnant N132D

    Get PDF
    The observation of the supernova remnant N132D by the scientific instruments on board the XMM-Newton satellite is presented. The X-rays from N132D are dispersed into a detailed line-rich spectrum using the Reflection Grating Spectrometers. Spectral lines of C, N, O, Ne, Mg, Si, S, and Fe are identified. Images of the remnant, in narrow wavelength bands, produced by the European Photon Imaging Cameras reveal a complex spatial structure of the ionic distribution. While K-shell Fe emission seems to originate near the centre, all of the other ions are observed along the shell. A high O VII / O VIII emission ratio is detected on the northeastern edge of the remnant. This can be a sign of hot ionising conditions, or it can reflect relatively cool gas. Spectral fitting of the CCD spectrum suggests high temperatures in this region, but a detailed analysis of the atomic processes involved in producing the O VII spectral lines leads to the conclusion that the intensities of these lines alone cannot provide a conclusive distinction between the two scenarios.Comment: To appear in A&A Letters, 365 (2001

    Persistent elevation of urine aquaporin-2 during water loading in a child with nephrogenic syndrome of inappropriate antidiuresis (NSIAD) caused by a R137L mutation in the V2 vasopressin receptor

    Get PDF
    Nephrogenic Syndrome of Inappropriate Antidiuresis (NSIAD) is a novel disease caused by a gain-of-function mutation in the V2 vasopressin receptor (V2R), which results in water overload and hyponatremia. We report the effect of water loading in a 3-year old boy with NSIAD, diagnosed in infancy, to assess urine aquaporin-2 (AQP2) excretion as a marker for V2R activation, and to evaluate the progression of the disease since diagnosis. The patient is one of the first known NSIAD patients and the only patient with a R137L mutation. Patient underwent a standard water loading test in which serum and urine sodium and osmolality, serum AVP, and urine AQP2 excretion were measured. The patient was also evaluated for ad lib fluid intake before and after the test. This patient demonstrated persistent inability to excrete free water. Only 39% of the water load (20 ml/kg) was excreted during a 4-hour period (normal ≥ 80-90%). Concurrently, the patient developed hyponatremia and serum hypoosmolality. Serum AVP levels were detectable at baseline and decreased one hour after water loading; however, urine AQP2 levels were elevated and did not suppress normally during the water load. The patient remained eunatremic but relatively hypodipsic during ad lib intake. In conclusion, this is the first demonstration in a patient with NSIAD caused by a R137L mutation in the V2R that urine AQP2 excretion is inappropriately elevated and does not suppress normally with water loading. In addition, this is the first longitudinal report of a pediatric patient with NSIAD diagnosed in infancy who demonstrates the ability to maintain eunatremia during ad lib dietary intake

    Arsenic concentrations in seagrass around the Mediterranean coast and seasonal variations

    Get PDF
    Arsenic’s occurrence in the environment could be due to human activities as well as to natural sources. In this study, Posidonia oceanica and Cymodocea nodosa are collected in 84 sites around the Mediterranean basin. In addition, both seagrass are collected monthly, in two sites (Calvi in Corsica and Salammbô in Tunisia). Arsenic concentrations in C. nodosa present seasonal variations in relation with spring phytoplankton blooms. For both species arsenic concentration is higher in the vicinity of geological sources (mining), lagoon outlets and industrial activities. Moreover, Mediterranean islands (Balearic, Sardinia, Corsica, Malta, Crete and Cyprus) and the Southern basin coastline exhibit lower concentrations in Arsenic than the rest of the Mediterranean basin. The wide spread distribution of these two species would encourage their use in a global monitoring network devoted to Arsenic contamination.peer-reviewe

    New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children

    Get PDF
    Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP)

    Circulating microRNAs in sera correlate with soluble biomarkers of immune activation but do not predict mortality in ART treated individuals with HIV-1 infection: A case control study

    Get PDF
    Introduction: The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. Materials and Methods: A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. Results: None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR- 145 correlated with nadir CD4+ T cell count. Discussion: No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection
    corecore