141 research outputs found

    Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions

    Get PDF
    We investigate the dynamics of two agent based models of language competition. In the first model, each individual can be in one of two possible states, either using language XX or language YY, while the second model incorporates a third state XY, representing individuals that use both languages (bilinguals). We analyze the models on complex networks and two-dimensional square lattices by analytical and numerical methods, and show that they exhibit a transition from one-language dominance to language coexistence. We find that the coexistence of languages is more difficult to maintain in the Bilinguals model, where the presence of bilinguals in use facilitates the ultimate dominance of one of the two languages. A stability analysis reveals that the coexistence is more unlikely to happen in poorly-connected than in fully connected networks, and that the dominance of only one language is enhanced as the connectivity decreases. This dominance effect is even stronger in a two-dimensional space, where domain coarsening tends to drive the system towards language consensus.Comment: 30 pages, 11 figure

    Optimizing spread dynamics on graphs by message passing

    Full text link
    Cascade processes are responsible for many important phenomena in natural and social sciences. Simple models of irreversible dynamics on graphs, in which nodes activate depending on the state of their neighbors, have been successfully applied to describe cascades in a large variety of contexts. Over the last decades, many efforts have been devoted to understand the typical behaviour of the cascades arising from initial conditions extracted at random from some given ensemble. However, the problem of optimizing the trajectory of the system, i.e. of identifying appropriate initial conditions to maximize (or minimize) the final number of active nodes, is still considered to be practically intractable, with the only exception of models that satisfy a sort of diminishing returns property called submodularity. Submodular models can be approximately solved by means of greedy strategies, but by definition they lack cooperative characteristics which are fundamental in many real systems. Here we introduce an efficient algorithm based on statistical physics for the optimization of trajectories in cascade processes on graphs. We show that for a wide class of irreversible dynamics, even in the absence of submodularity, the spread optimization problem can be solved efficiently on large networks. Analytic and algorithmic results on random graphs are complemented by the solution of the spread maximization problem on a real-world network (the Epinions consumer reviews network).Comment: Replacement for "The Spread Optimization Problem

    New experimental techniques for fracture testing of highly deformable materials

    Get PDF
    A new experimental method for measuring strain fields in highly deformable materials has been developed. This technique is based on an in-house developed Digital Image Correlation (DIC) system capable of accurately capturing localized or non-uniform strain distributions. Thanks to the implemented algorithm based on a Semi-Global Matching (SGM) approach, it is possible to constraint the regularity of the displacement field in order to significantly improve the reliability of the evaluated strains, especially in highly deformable materials. Being originally introduced for Digital Surface Modelling from stereo pairs, SGM is conceived for performing a one-dimensional search of displacements between images, but here a novel implementation for 2D displacement solution space is introduced. SGM approach is compared with the previously in-house developed implementation based on a local Least Squares Matching (LSM) approach. A comparison with the open source code Ncorr and with some FEM results is also presented. The investigation using the present DIC method focuses on 2D full-field strain maps of plain and notched specimens under tensile loading made of two different highly deformable materials: hot mix asphalt and thermoplastic composites for 3D-printing applications. In the latter specimens, an elliptical hole is introduced to assess the potentiality of the method in experimentally capturing high strain gradients in mixed-mode fracture situations

    Reinforcement-Driven Spread of Innovations and Fads

    Full text link
    We propose kinetic models for the spread of permanent innovations and transient fads by the mechanism of social reinforcement. Each individual can be in one of M+1 states of awareness 0,1,2,...,M, with state M corresponding to adopting an innovation. An individual with awareness k<M increases to k+1 by interacting with an adopter. Starting with a single adopter, the time for an initially unaware population of size N to adopt a permanent innovation grows as ln(N) for M=1, and as N^{1-1/M} for M>1. The fraction of the population that remains clueless about a transient fad after it has come and gone changes discontinuously as a function of the fad abandonment rate lambda for M>1. The fad dies out completely in a time that varies non-monotonically with lambda.Comment: 4 pages, 2 columns, 5 figures, revtex 4-1 format; revised version has been expanded and put into iop format, with one figure adde

    The Naming Game in Social Networks: Community Formation and Consensus Engineering

    Full text link
    We study the dynamics of the Naming Game [Baronchelli et al., (2006) J. Stat. Mech.: Theory Exp. P06014] in empirical social networks. This stylized agent-based model captures essential features of agreement dynamics in a network of autonomous agents, corresponding to the development of shared classification schemes in a network of artificial agents or opinion spreading and social dynamics in social networks. Our study focuses on the impact that communities in the underlying social graphs have on the outcome of the agreement process. We find that networks with strong community structure hinder the system from reaching global agreement; the evolution of the Naming Game in these networks maintains clusters of coexisting opinions indefinitely. Further, we investigate agent-based network strategies to facilitate convergence to global consensus.Comment: The original publication is available at http://www.springerlink.com/content/70370l311m1u0ng3

    Router-level community structure of the Internet Autonomous Systems

    Get PDF
    The Internet is composed of routing devices connected between them and organized into independent administrative entities: the Autonomous Systems. The existence of different types of Autonomous Systems (like large connectivity providers, Internet Service Providers or universities) together with geographical and economical constraints, turns the Internet into a complex modular and hierarchical network. This organization is reflected in many properties of the Internet topology, like its high degree of clustering and its robustness. In this work, we study the modular structure of the Internet router-level graph in order to assess to what extent the Autonomous Systems satisfy some of the known notions of community structure. We show that the modular structure of the Internet is much richer than what can be captured by the current community detection methods, which are severely affected by resolution limits and by the heterogeneity of the Autonomous Systems. Here we overcome this issue by using a multiresolution detection algorithm combined with a small sample of nodes. We also discuss recent work on community structure in the light of our results

    Innovations in earthquake risk reduction for resilience: Recent advances and challenges

    Get PDF
    The Sendai Framework for Disaster Risk Reduction 2015-2030 (SFDRR) highlights the importance of scientific research, supporting the ‘availability and application of science and technology to decision making’ in disaster risk reduction (DRR). Science and technology can play a crucial role in the world’s ability to reduce casualties, physical damage, and interruption to critical infrastructure due to natural hazards and their complex interactions. The SFDRR encourages better access to technological innovations combined with increased DRR investments in developing cost-effective approaches and tackling global challenges. To this aim, it is essential to link multi- and interdisciplinary research and technological innovations with policy and engineering/DRR practice. To share knowledge and promote discussion on recent advances, challenges, and future directions on ‘Innovations in Earthquake Risk Reduction for Resilience’, a group of experts from academia and industry met in London, UK, in July 2019. The workshop focused on both cutting-edge ‘soft’ (e.g., novel modelling methods/frameworks, early warning systems, disaster financing and parametric insurance) and ‘hard’ (e.g., novel structural systems/devices for new structures and retrofitting of existing structures, sensors) risk-reduction strategies for the enhancement of structural and infrastructural earthquake safety and resilience. The workshop highlighted emerging trends and lessons from recent earthquake events and pinpointed critical issues for future research and policy interventions. This paper summarises some of the key aspects identified and discussed during the workshop to inform other researchers worldwide and extend the conversation to a broader audience, with the ultimate aim of driving change in how seismic risk is quantified and mitigated

    Dynamics of Confident Voting

    Full text link
    We introduce the confident voter model, in which each voter can be in one of two opinions and can additionally have two levels of commitment to an opinion --- confident and unsure. Upon interacting with an agent of a different opinion, a confident voter becomes less committed, or unsure, but does not change opinion. However, an unsure agent changes opinion by interacting with an agent of a different opinion. In the mean-field limit, a population of size N is quickly driven to a mixed state and remains close to this state before consensus is eventually achieved in a time of the order of ln N. In two dimensions, the distribution of consensus times is characterized by two distinct times --- one that scales linearly with N and another that appears to scale as N^{3/2}. The longer time arises from configurations that fall into long-lived states that consist of two (or more) single-opinion stripes before consensus is reached. These stripe states arise from an effective surface tension between domains of different opinions.Comment: 13 pages, 8 figures, iop format. Version 2 has minor revisions in response to referee comments. For publication in JSTA

    A systematic review and meta-analysis of the effects of flavanol-containing tea, cocoa and apple products on body composition and blood lipids: exploring the factors responsible for variability in their efficacy

    Get PDF
    Several randomized controlled trials (RCTs) and meta-analyses support the benefits of flavanols on cardiometabolic health, but the factors affecting variability in the responses to these compounds have not been properly assessed. The objectives of this meta-analysis were to systematically collect the RCTs-based-evidence of the effects of flavanol-containing tea, cocoa and apple products on selected biomarkers of cardiometabolic risk and to explore the influence of various factors on the variability in the responses to the consumption of these products. A total of 120 RCTs were selected. Despite a high heterogeneity, the intake of the flavanol-containing products was associated using a random model with changes (reported as standardized difference in means (SDM)) in body mass index (−0.15, p < 0.001), waist circumference (−0.29, p < 0.001), total-cholesterol (−0.21, p < 0.001), LDL-cholesterol (−0.23, p < 0.001), and triacylglycerides (−0.11, p = 0.027), and with an increase of HDL-cholesterol (0.15, p = 0.005). Through subgroup analyses, we showed the influence of baseline-BMI, sex, source/form of administration, medication and country of investigation on some of the outcome measures and suggest that flavanols may be more effective in specific subgroups such as those with a BMI ≥ 25.0 kg/m2, non-medicated individuals or by specifically using tea products. This meta-analysis provides the first robust evidence of the effects induced by the consumption of flavanol-containing tea, cocoa and apple products on weight and lipid biomarkers and shows the influence of various factors that can affect their bioefficacy in humans. Of note, some of these effects are quantitatively comparable to those produced by drugs, life-style changes or other natural products. Further, RCTs in well-characterized populations are required to fully comprehend the factors affecting inter-individual responses to flavanol and thereby improve flavanols efficacy in the prevention of cardiometabolic disordersinfo:eu-repo/semantics/publishedVersio

    Effects of noise on convergent game learning dynamics

    Full text link
    We study stochastic effects on the lagging anchor dynamics, a reinforcement learning algorithm used to learn successful strategies in iterated games, which is known to converge to Nash points in the absence of noise. The dynamics is stochastic when players only have limited information about their opponents' strategic propensities. The effects of this noise are studied analytically in the case where it is small but finite, and we show that the statistics and correlation properties of fluctuations can be computed to a high accuracy. We find that the system can exhibit quasicycles, driven by intrinsic noise. If players are asymmetric and use different parameters for their learning, a net payoff advantage can be achieved due to these stochastic oscillations around the deterministic equilibrium.Comment: 17 pages, 8 figure
    corecore