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Abstract. We investigate the dynamics of two agent based models of language

competition. In the first model, each individual can be in one of two possible states,

either using language X or language Y , while the second model incorporates a third

state XY , representing individuals that use both languages (bilinguals). We analyze

the models on complex networks and two-dimensional square lattices by analytical

and numerical methods, and show that they exhibit a transition from one-language

dominance to language coexistence. We find that the coexistence of languages is more

difficult to maintain in the Bilinguals model, where the presence of bilinguals in use

facilitates the ultimate dominance of one of the two languages. A stability analysis

reveals that the coexistence is more unlikely to happen in poorly-connected than in

fully connected networks, and that the dominance of only one language is enhanced as

the connectivity decreases. This dominance effect is even stronger in a two-dimensional

space, where domain coarsening tends to drive the system towards language consensus.
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1. Introduction

A deep understanding of collective phenomena in Statistical Mechanics is well

established in terms of microscopic spin models. Useful macroscopic descriptions of

these models in terms of mean field approaches, pair and higher order approximations,

and field theories are also well known. Partly inspired by this success, collective social

phenomena are being currently studied in terms of microscopic models of interacting

agents [1]. Agents, playing here the role of spins, sit in the nodes of a network of social

interactions and change their state (social option) according to specified dynamical rules

of interaction with their neighbors in the network. A general question addressed is the

consensus problem, reminiscent of order-disorder transitions: The aim is to establish

ranges of the parameters determining the interaction rules and network characteristics

for which the system is eventually dominated by one state or option or, on the contrary,

when a configuration of global coexistence is reached [2].

Language competition falls within the context of such social consensus problems:

One considers a population of agents that can use either of two languages (two states).

The agents change their state of using one or the other language, by interactions with

other agents. One is here interested in determining when a state of dominance (or

extinction) of one language is reached, or when a state of global language coexistence,

with a finite fraction of the two kind of speakers, prevails. A particular and interesting

ingredient in this problem is the possibility of a third state associated with bilingual

agents, which have been claimed to play an essential role in processes of language

contact [3, 4]. A good deal of work along these lines originates in a paper by Abrams

and Strogatz [5]. These authors introduced a simple population dynamics model with

the aim of describing the irreversible death of many languages around the world [6].

The original Abrams-Strogatz model (ASM) was a macroscopic description based on

ordinary differential equations, but a corresponding microscopic agent based model was

described in [7]. This model features probabilities to switch languages determined by

the local density of speakers of the opposite language, and by two parameters that we

call prestige, S and volatility, a. Prestige is a symmetry breaking parameter favoring

the state associated with one or other language which accounts for the differences in

the social status between the two languages in competition. The volatility parameter

determines the functional form of the switching probability. It characterizes a property

of the social dynamics associated to the inertia of an agent to change its current option,

with its neutral value a = 1 corresponding to a mechanism of random imitation of a

neighbor in the network. Other studies of the ASM account for the effects of geographical

boundaries introduced in terms of reaction-diffusion equations [8] or for Lotka-Volterra

modifications of the original model [9]. Another different class of models accounts for

many languages in competition, with the aim of reproducing the distribution of language

sizes in the world [10, 11].

While in the original paper of Abrams and Strogatz [5] the two parameters S
and a were fitted to a particular linguistic data, most subsequent work has focused on
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theoretical analysis for the case of symmetrical prestige and neutral volatility. For these

parameter values (symmetric S and a = 1) the microscopic ASM coincides with the

voter model [12], a paradigmatic spin model of nonequilibrium dynamics [13]. Inspired

in the modifications proposed by Minett and Wang of the ASM [14, 15], a microscopic

Bilinguals model (BM) which introduces a third (intermediate) state to account for

bilingualism has been studied for the case of symmetric S and a = 1 in [16]. In this

way, this case is an extension of the original voter model. The emphasis has been in

describing the effects of the third state of bilingual agents in the dynamics of language

competition as compared with the reference case provided by the voter model. This

includes the characterization of the different processes of domain growth [16], and

the role of the network topology, like small world networks [16] and networks with

mesoscopic community structure [17, 18]. Other studies associated to variations of the

voter model dynamics and the addition of intermediate states have also been addressed

in [19, 20, 21, 22, 23, 24].

A pending task in the study of this class of models for language competition

is, therefore, the detailed analysis of the role of the prestige and volatility in

their general dynamical properties. In addition, for the voter model, macroscopic

field theory descriptions [25, 26] as well as macroscopic and analytical solutions

in different complex networks [27] have been reported, but there is still a lack of

useful macroscopic descriptions of these models for arbitrary values of the prestige

and volatility parameters. The general aim of this paper is then, to explore the

behavior of these models for a wide range of these parameters values, and to derive

appropriate macroscopic descriptions that account for the observed order-disorder

(language dominance-coexistence) transitions in the volatility-prestige parameter space.

In particular, we analyze how the introduction of an intermediate bilingual state

affects language coexistence, by comparing the regions of coexistence and one-language

dominance of the ASM and BM in the parameter space. In addition, we study how

these regions are modified, within the same models, when the dynamics takes place on

networks with different topologies.

The paper is organized as follows. In section 2, we introduce and study the

Abrams-Strogatz model on fully connected and complex networks. Starting from

the microscopic dynamics, we derive ordinary differential equations for the global

magnetization (difference between the fraction of speakers of each language) and the

interface density (fraction of links connecting opposite-language speakers). We use these

equations to analyze ordering and stability properties of the system, that is, whether

there is language coexistence or monolingual dominance in the long time limit. In section

3, we introduce and study the Bilinguals model, following an approach similar to the

one in section 2. In section 4, we address the behavior of these language competition

models and the order-disorder transitions on square lattices. In particular, we build

a macroscopic description of the dynamics of the ASM on square lattices by deriving

partial differential equations for the magnetization field, that depend on space and time.

Finally, in section 5 we present a discussion and a summary of the results.
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2. Abrams and Strogatz model

The microscopic agent based version [7, 16] of the model proposed by Abrams and

Strogatz [5] considers a population of N individuals sitting in the nodes of a social

network of interactions. Every individual can speak two languages X and Y , but it uses

only one at a time. In a time step, an individual chosen at random is given the possibility

to give up the use of its language and start using the other language. The likelihood

that the individual changes language use depends on the fraction of its neighbors using

the opposite language. Neighbors are here understood as agents sitting in nodes directly

connected by a link of the network. The language switching probabilities are defined as

P (X → Y ) = (1− S) σa
y and

P (Y → X) = S σa
x, (1)

where σx(σy) is the density of X(Y ) neighboring speakers of a given individual,

0 ≤ S ≤ 1 is the prestige of language X , and a > 0 is the volatility parameter. S
controls the asymmetry of language change [S > 1/2 (S < 1/2) favoring language

X(Y )], whereas a measures the tendency to switch language use. The case a=1 is

a neutral situation, in which the transition probabilities depend linearly on the local

densities. A high volatility regime regime exists for a < 1, with a probability of changing

language state above the neutral case, and therefore agents change their state rather

frequently. A low volatility regime exists for a > 1 with a probability of changing

language state below the neutral case with agents having a larger resistance or inertia

to change their state.

Having defined the model, we would like to investigate the dynamics and ultimate

fate of the population, that is, whether all individuals will agree after many interactions

in the use of one language or not. In order to perform an analytical and numerical

study of the evolution of the system we consider, in an analogy to spin models, X

and Y speakers as spin particles in states s = −1 (spin down) and s = 1 (spin up)

respectively. Thus, the state of the system in a given time can be characterized quite

well by two macroscopic quantities: The global magnetization m ≡ 1
N

∑N
i=1 Si, (Si with

i = 1, .., N is the state of individual i in a population of size N), and the density of pairs

of neighbors using different languages ρ ≡ 1
2Nl

∑

<ij>(1−SiSj)/2, where Nl is the number

of links in the network and the sum is over all pair of neighbors. The magnetization

measures the balance in the fractions of X and Y speakers (m = 0 corresponding to

the perfectly balanced case), whereas ρ measures the degree of disorder in the system.

The case |m| = 1 and ρ = 0 corresponds to the totally ordered situation, with all

individuals using the same language, while |m| < 1 and ρ > 0 indicates that the system

is disordered, composed by both type of speakers.

The aim is to obtain differential equations for the time evolution of the average

values of m and ρ. These equations are useful in the study of the properties of the

system, from an analytical point of view. We start by deriving these equations in the

case of a highly connected society with no social structure (fully connected network),
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that corresponds to the simplified assumption of a “well mixed” population, widely

used in population dynamics. We then obtain the equations in a more realistic scenario,

when the topology of interactions between individuals is a social complex network. We

shall see that the results depend on the particular properties of the network under

consideration, reflected in the moments of the degree distribution.

2.1. Fully connected networks

We consider a network composed by N nodes, in which each node has a connection to

any other node. In a time step δt = 1/N , a node i with state s (s = ±1) is chosen

with probability σs. Then, according to the transitions (1), i switches its sate with

probability

P (s→ −s) = 1

2
(1− sv) (σ−s)

a , (2)

where σ−s is the density of neighbors of i with state −s, that in this fully connected

network is equal to the global density of −s nodes. Given that the total number of

individuals is conserved we have that σ− + σ+ = 1. We define the bias v ≡ 1 − 2S
(−1 < v < 1) as a measure of the preference for one of the two languages, with v > 0

(v < 0) favoring the s = 1 (s = −1) state. In the case that the switch occurs, the

density σs is reduced by 1/N , for which the magnetization m = σ+ − σ− changes by

−2s/N . Then, the average change in the magnetization can be written as

dm(t)

dt
=

1

1/N

[

σ−P (− → +)
2

N
− σ+P (+ → −)

2

N

]

. (3)

Using Eq. (2) and expressing the global densities σ± in terms of the magnetization,

σ± = (1±m)/2, we arrive to

dm(t)

dt
= 2−(a+1)(1−m2)

[

(1 + v)(1 +m)a−1 − (1− v)(1−m)a−1
]

. (4)

Equation (4) describes the evolution of a very large system (N ≫ 1) at the macroscopic

level, neglecting finite size fluctuations. This equation for the magnetization is enough

to describe the system, given that the density of neighboring nodes in opposite state ρ

can be indirectly obtained through the relation

ρ(t) = 2 σ+(t) σ−(t) =
[1−m2(t)]

2
. (5)

2.1.1. Stability Equation (4) has three stationary solutions

m− = −1, m∗ =
(1− v)

1

a−1 − (1 + v)
1

a−1

(1− v)
1

a−1 + (1 + v)
1

a−1

and m+ = 1. (6)

The stability of each of the solutions depends on the values of the parameters a and v.

A simple stability analysis can be done by considering a small perturbation ǫ around a

stationary solution ms. For ms = m±, we replace m in Eq. (4) by m = ±1 ∓ ǫ (with

ǫ > 0), and expand to first order in ǫ to obtain

dǫ

dt
= 2−a

[

(1∓ v)ǫa−1 − 2a−1(1± v)
]

ǫ. (7)
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Figure 1. Coexistence and dominance regions of the Abrams-Strogatz model in a fully

connected network. For values of the volatility parameter a > 1, the stable solutions

are those of language dominance, i.e., all individuals using language X (ms = −1)

or all using language Y (ms = 1), whereas for a < 1 both languages coexist, with a

relative fraction of speakers that depends on a and the difference between languages’

prestige, measured by the bias v. In the extreme case v = −1 (v = 1), only language

switchings towards X (Y ) are allowed, and thus only one dominance state is stable,

independent on a.

When a < 1, ǫa−1 → ∞ as ǫ → 0, thus both solutions m± are unstable, whereas for

a > 1, ǫa−1 → 0 as ǫ→ 0, thus m± are stable. In the line a = 1, m+ is unstable (stable)

for v < 0 (v > 0), and vice-versa for m−. The same analysis for the intermediate

solution m∗ leads to

dǫ

dt
= 2−(a+1)(a− 1)

(

1−m∗2
) [

(1 + v)(1 +m∗)a−2 + (1− v)(1−m∗)a−2
]

ǫ.

(8)

Then, m∗ is unstable (stable) for a > 1 (a < 1). In Fig. 1 we show the regions of stability

and instability of the stationary solutions on the (a, v) plane obtained from the above

analysis. We observe a region of coexistence (m∗ stable) and one of bistable dominance

(m+ and m− stable).

The non-trivial stationary solution, m∗, is shown in Fig. 2 as a function of the

parameters a and v. For the coexistence regime (a < 1), the absolute value of the

stable stationary magnetization |m∗| increases with both, |v| and a. When v 6= 0

the coexistence solution includes a majority of agents using the language with higher

prestige, and the rest of the agents using the language with lower prestige. On the

contrary, for the dominance regime (a > 1) |m∗| decreases with a and increases with |v|.
In order to account for possible finite size effects neglected in Eq. (4) we have run

numerical simulations in a fully connected network. We first notice that the solutions

m = ±1 correspond to the totally ordered absorbing configurations, that is, once the

system reaches those configurations it never escapes from them. This is because, from
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Figure 2. Stationary solution m∗(a, v) for the Abrams-Strogatz model (vertical axis)

as a function of the two parameters of the model, a and v (horizontal-plane). See

Expression (6). Notice how m∗ approaches the values of the two trivial stationary

solutions, m− = −1 and m+ = +1 when a → 1: for v > 0, lima→1±(m
∗) = ∓1. The

opposite holds for v < 0. The non-trivial stationary solution, m∗, is effectively not

defined at a = 1, and in this case the system has only two stationary states, m− and

m+. The figure illustrates the change of stability of m∗ at ac = 1.

the transition probabilities Eq. (2), a node never flips when it has the same state as all

its neighbors. Thus, to study the stability of these solutions we have followed a standard

approach [13] that consists of adding a defect (seed) to the initial absorbing state and

let the system evolve (spreading experiment). If, in average, the defect spreads over the

entire system, then the absorbing state is unstable, otherwise if the defect quickly dies

out, the absorbing state is stable. For instance, to study the stability of m = −1, we

started from a configuration composed by N − 1 down spins and 1 up spin (seed), that

corresponds to a magnetization m = −1+2/N & −1, and we let the system evolve until

an absorbing configuration was reached. Whether m = −1 is stable or not depends on

the values of v and a. If m = −1 is unstable, then the seed creates many up spins and

spreads over the system, to end in one of the absorbing states. If m = −1 is stable, then

the initial perturbation dies out, and the system ends in the m = −1 absorbing state.

The theory of criticality predicts that the survival probability P (t), i.e, the fraction of

realizations that have not died up to time t, follows a power-law at the critical point [13],

where the stability of the absorbing solution changes. Figure 3 shows that for a fixed

value of the bias v = 0, P (t) decreases exponentially fast to zero for values of a > 1,
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Figure 3. Probability P (t) that the system is still alive at time t, when it starts from a

configuration composed by an up spin in a sea of 105−1 down spins, endowed with the

Abrams-Strogatz dynamics with equivalent languages (bias v = 0), on a fully connected

network. Different curves correspond to the values a = 0.90, 0.99, 1.00, 1.01, 1.10 and

2.0 (from top to bottom). At ac ≃ 1.0, P (t) follows a power law decay with exponent

δ ≃ 0.95, indicated by the dashed line.

while it reaches a constant value for a < 1. For ac ≃ 1.0, P (t) decays as P (t) ∼ t−δ, with

δ ≃ 0.95, indicating the transition line from an unstable to a stable solution m = −1 as

a is increased, in agreement with the previous stability analysis.

Following the same procedure, we have also run spreading experiments to check

the stability transition for different values of the bias. For v = −0.02 and v = −0.2,

on a system of size N = 105, we found the transitions at a ≃ 1.007 and a ≃ 1.052,

respectively. These values are slightly different from the analytical value ac ≃ 1.0, but

we have verified that as N is increased, the values become closer to 1.0, in agreement

with the stability analysis on infinite large systems.

An alternative and more visual way of studying stability in the mean field limit, is

by writing Eq. (4) in the form of a time-dependent Ginzburg-Landau equation

dm(t)

dt
= −∂Va,v(m)

∂m
, (9)

with potential

Va,v(m) ≡ 2−a

{

−vm− 1

2
(a− 1)m2 +

v

6
[2− (a− 1)(a− 2)]m3

+
1

24
(a− 1) [6− (a− 2)(a− 3)]m4 +

v

10
(a− 1)(a− 2)m5

+
1

36
(a− 1)(a− 2)(a− 3)m6

}

. (10)

Va,v is obtained by Taylor expanding the term in square brackets of Eq. (4) up to 3-rd

order in m, and integrating once over m. We assume that higher order terms in the
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Figure 4. Ginzburg-Landau potential from Eq. (10), for the Abrams-Strogatz model

with bias v = −0.1 and values of volatility a = 0.8, 1.0 and 2.0 (from top to bottom).

Arrows show the direction of the system’s magnetization towards the stationary

solution (solid circles). For a = 0.8 the minimum is around m ≃ −0.5, indicating

that the system relaxes towards a partially ordered stationary state, while for a = 1.0

and 2.0, it reaches the complete ordered state m = −1.

expansion are irrelevant, and the dynamics is well described by an m6-potential.

Within this framework, the state of the system, represented by a point m(t) in

the magnetization one-dimensional space −1 < m < 1, moves “down the potential

hill”, trying to reach a local minimum. Therefore, a minimum of Va,v at some point

ms represents a stable stationary solution, given that if the system is moved apart from

ms and then released, it immediately goes back to ms, whereas a maximum of Va,v
represents an unstable stationary solution. As Fig. 4 shows, for a < 1 and all values

of v, the single-well potential has a minimum at |ms| < 1 (ms ≃ −0.5 for a = 0.8 and

v = −0.1), indicating that the system reaches a partially ordered stable state, with

fractions 0.75 and 0.25 of down and up spins, respectively, and a density of opposite-

state links ρ ≃ 0.375. For a > 1, the double-well potential has a minimum at m = ±1,

thus depending on the initial magnetization, the system is driven to one of the stationary

solutions m = ±1, corresponding to the totally ordered configurations in which ρ = 0.

This description works well in infinite large systems, where finite size fluctuations

are zero. But in finite systems, the absorbing solutions m = ±1 are the only “truly

stationary states”, given that fluctuations ultimate take the system to one of those

states. Even for the case a < 1, where the minimum is at |ms| < 1, the magnetization

fluctuates around ms for a very long time until after a large fluctuation it reaches

|m| = 1, and the system freezes.

2.1.2. a = 1 case: the voter model For a = 1 the ASM becomes equivalent to the

voter model. A switching probability proportional to the local density of neighbors in

the opposite state is statistically equivalent to adopt the state of a randomly chosen
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Figure 5. Abrams-Strogatz model on a fully connected network of N = 1000 nodes

with volatility a = 1. Upper panel: Average magnetization m vs time for values

of the bias v = 0.8, 0.4, 0.2, 0.0,−0.2,−0.4 and −0.8 (from top to bottom). Lower

panel: Average density of opposite-state links ρ vs time for v = 0.0, 0.2, 0.4 and 0.8

(top to bottom). Open symbols are the results from numerical simulations, while

solid lines in the upper and lower panels correspond to the solutions from Eqs. (13)

and (14) respectively. Averages are over 100 independent realizations starting from a

configuration with a uniform distribution of spins and global magnetization m(0) = 0.

neighbor. In this limit of neutral volatility, a = 1, Eq. (4) becomes

dm

dt
=
v

2
(1−m2), (11)

whose solution is

m(t) =
(1 +m0)e

vt − (1−m0)

(1 +m0)evt + (1−m0)
, (12)

with m0 = m(t = 0). For a uniform initial condition is m0 = 0, thus

m(t) = tanh(vt/2), (13)

and

ρ(t) =
1

2

[

1− tanh2(vt/2)
]

. (14)

In Fig. 5 we observe that the analytical solutions from Eqs. (13) and (14) agree very well

with the results from numerical simulations of the model, for large enough systems, and

they also reproduce the Monte Carlo results found in [7]. This is so, because finite-size

fluctuations effects are negligible compare to bias effects, even for a small bias.

When the bias is exactly zero, one obtains that in an infinite large network

dm/dt = 0, thus m and ρ are conserved. However, in a finite network, fluctuations

always lead the system to one of the absorbing states [7]. To find how the system relaxes

to the final state, one needs to calculate the evolution of the second moment 〈m2〉 of

the magnetization, related to the fluctuations in m, where the symbol 〈 〉 represents
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an average over many realizations. This leads to a decay of the average density of

opposite-state links of the form (see [27])

〈ρ(t)〉 = 1

2

[

1− 〈m2(t)〉
]

= 〈ρ(0)〉 e−2t/N . (15)

In terms of the potential description of Eq. (9), we observe that when v 6= 0, Va,v
has only one minimum (see Fig. 4), thus the system has a preference for one of the

absorbing states only, whereas if v = 0, is Va,v = 0, and the magnetization is conserved

(m(t) = m(0) = constant). In finite systems, even though the average magnetization

over many realizations is conserved, the system stills orders in individual realizations

by finite size fluctuations.

2.2. Complex networks

In real life, most individuals in a large society interact only with a small number of

acquaintances, and they all form a social network of connections, where nodes represent

individuals and links between them represent interactions. Thereby, we consider a

network of N nodes, with a given degree distribution Pk, representing the fraction

of individuals connected to k neighbors, such that
∑

k Pk = 1. In order to develop a

mathematical approach that is analytically tractable, we assume that the network has no

degree correlations, as it happens for instance in Erdös-Renyi [28] and Barabási-Albert

scale-free networks [29]. It turns out that dynamical correlations between the states

of second nearest-neighbors are negligible in voter models on uncorrelated networks

[27, 30]. Thus, taking into account only correlations between first nearest-neighbors

allows to use an approach, called pair approximation, that leads to analytical results in

good agreement with simulations. In this section, we shall use this approximation to

build equations for the magnetization and the density of links in opposite state.

In a time step δt = 1/N , a node i with degree k and state s is chosen with probability

Pk σs. Here we assume that the density of nodes in state s within the subgroup of nodes

with degree k is independent on k and equal to the global density σs. Then, according

to transitions (1), i switches its sate with probability

P (s→ −s) = 1

2
(1− sv) (n−s/k)

a , (16)

where we denote by n−s the number of neighbors of i in the opposite state −s
(0 ≤ n−s ≤ k) and the bias v is defined as in the previous section. If the switch

occurs, the density σs is reduced by 1/N , for which the magnetization m = σ+ − σ−
changes by −2s/N , while the density ρ changes by 2(k− 2n−s)/µN , where µ ≡

∑

k kPk

is the average degree of the network. Thus, in analogy to section 2.1, but now plugging

the transition probabilities from Eq. (16) into Eq. (3), we write the average change in

the magnetization as

dm(t)

dt
=

∑

k

Pkσ−
1/N

k
∑

n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2

N
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−
∑

k

Pkσ+
1/N

k
∑

n−=0

B(n−, k)
(1− v)

2

(n−

k

)a 2

N
, (17)

and similarly, the change in the density of links in opposite state as

dρ(t)

dt
=

∑

k

Pkσ−
1/N

k
∑

n+=0

B(n+, k)
(1 + v)

2

(n+

k

)a 2(k − 2n+)

µN

+
∑

k

Pkσ+
1/N

k
∑

n−=0

B(n−, k)
(1− v)

2

(n−

k

)a 2(k − 2n−)

µN
. (18)

We denote by B(ns, k), the probability that a node of degree k and state −s has ns

neighbors in the opposite state s. Defining the a-th moment of B(ns, k) as

〈na
s〉k ≡

k
∑

ns=0

B(ns, k)n
a
s ,

we arrive to the equations

dm(t)

dt
=

∑

k

Pk

2 ka
[

(1 + v)(1−m)〈na
+〉k − (1− v)(1 +m)〈na

−
〉k
]

, (19)

dρ(t)

dt
=

∑

k

Pk

2µ ka

{

(1 + v)(1−m)
[

k〈na
+〉k − 2〈n(1+a)

+ 〉k
]

+ (1− v)(1 +m)
[

k〈na
−
〉k − 2〈n(1+a)

− 〉k
]}

. (20)

2.2.1. a = 1 case: the voter model In order to develop an intuition about the temporal

behavior of m and ρ from Eqs. (19) and (20), we first analyze the simplest and non-

trivial case a = 1, that corresponds to the voter model on complex networks. A

rather complete analysis of the time evolution and consensus times of this model on

uncorrelated networks, for the symmetric case v = 0, can be found in [27]. Following

a similar approach, here we study the general situation in which the bias v takes any

value. To obtain closed expressions for m and ρ, we consider that the system is “well

mixed”, in the sense that the different types of links are uniformly distributed over the

network. Therefore, we assume that the probability that a link picked at random is of

type +− is equal to the global density of +− links ρ. Then, B(n−s, k) becomes the

binomial distribution with

P (−s|s) = ρ/2σs (21)

as the single event probability that a first nearest-neighbor of a node with state s has

state −s. Here, we use the fact that in uncorrelated networks dynamical correlations

between the states of second nearest-neighbors vanish (pair approximation). P (−s|s)
is calculated as the ratio between the total number of links ρµN/2 from nodes in state

s to nodes in state −s, and the total number of links Nσsµ coming out from nodes in



Agent Based Models of Language Competition 13

state s. Taking a = 1 in Eqs. (19) and (20), and replacing the first and second moments

of B(n−s, k) by

〈n−s〉 = P (−s|s)k,
〈n2

−s〉 = P (−s|s)k + P (−s|s)2k(k − 1),

leads to the following two coupled closed equations for m and ρ

dm(t)

dt
= vρ (22)

dρ(t)

dt
=
ρ

µ

{

µ− 2− 2(µ− 1)(1 + v m)ρ

(1−m2)

}

. (23)

For v = 0, the above expressions agree with the ones of the symmetric voter model [27].

For the asymmetric case v 6= 0, we have checked numerically that the only stationary

solutions are (m = 1, ρ = 0) for v > 0 and (m = −1, ρ = 0) for v < 0, that correspond to

the fully ordered state, as we were expecting. Even though an exact analytical solution

of Eqs. (22) and (23) is hard to obtain, we can still find a solution in the long time limit,

assuming that ρ decays to zero as

ρ = Ae−t/2τ(v), for t≫ 1, (24)

where A is a constant given by the initial state and τ(v) is another constant that

depends on v, and quantifies the rate of decay towards the solutions m = 1 or m = −1.

To calculate the value of τ we first replace the ansatz from Eq. (24) into Eq. (22), and

solve for m with the boundary conditions m(ρ = 0) = 1 and −1, for v > 0 and v < 0,

respectively. We obtain

m =

{

1− 2vτρ if v > 0;

−1− 2vτρ if v < 0.
(25)

Then, to first order in ρ is

(1−m2) =

{

4vτρ if v > 0;

−4vτρ if v < 0.
(26)

Replacing the above expressions for m and (1−m2) into Eq. (23), and keeping only the

leading order terms, we arrive to the following expression for τ

τ(v) =

{

µ−1−v
2v(µ−2)

if v > 0;
1−µ−v
2v(µ−2)

if v < 0.
(27)

Finally, the magnetization for long times behave as

m =







1− (µ−1−v)A
µ−2

exp
[

−v(µ−2)
µ−1−v

t
]

if v > 0;

−1 + (µ−1+v)A
µ−2

exp
[

v(µ−2)
µ−1+v

t
]

if v < 0,
(28)

whereas the density of opposite state links decays as

ρ = A exp

[

− |v|(µ− 2)

µ− 1− |v|t
]

. (29)
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Using the expression for τ(S) from Eq. (27) in Eq. (26), and taking the limit v → 0,

we find that ρ(t) = (µ−2)
2(µ−1)

[1−m(t)2], in agreement with previous results of the voter

model on uncorrelated networks [27]. By taking µ = N − 1 ≫ 1 in Eqs. (28) and (29),

we recover the expressions for m and ρ on fully connected networks [Eqs. (13) and (14),

respectively], in the long time limit. This result means that the evolution of m and ρ in

the biased voter model on uncorrelated networks is very similar to the mean-field case,

with the time rescaled by the constant τ that depends on the topology of the network,

expressed by the mean connectivity µ. From the above equations we observe that the

system reaches the dominance state ρ = 0 in a time of order τ . For the special case

v = 0, τ diverges, thus Eqs. (28) and (29) predict that both m and ρ stay constant over

time. However, as mentioned in section 2.1.2, finite-size fluctuations drive the system

to the absorbing state (ρ = 0, |m| = 1). Taking fluctuations into account, one finds that

the approach to the final state is described by the decay of the average density ρ [27]

〈ρ(t)〉 = (µ− 2)

2(µ− 1)
e−2t/T , (30)

where T ≡ (µ−1)µ2N
(µ−1)µ2

, depends on the system size N , and the first and second moments,

µ and µ2 respectively, of the network.

2.2.2. Stability analysis As in fully connected networks, we assume that Eq. (19) for

the magnetization has three stationary solutions. Indeed, we have numerically verified

that for different types of networks there is, apart from the trivial solutions m = 1,−1,

an extra non-trivial stationary solution m = m∗. Due to the rather complicated form of

Eq. (19), we try to study the stability of the solutions in an approximate way, and find

a qualitative picture of the stability diagram in the (a, v) plane. For the general case in

which a and v take any values, we assume, as in the voter model case, that B(n−s, k)

is a binomial probability distribution with single event probabilities given by Eq. (21).

Then, the explicit form for the a-th moment of B(n, k) is

〈na
s〉 =

k
∑

ns=0

naCk
ns

(

ρ

2σ−s

)ns
(

1− ρ

2σ−s

)k−ns

. (31)

We also assume that, as it happens for the voter model case a = 1 [see Eq. (26)], ρ

and m are related by ρ(t) ≃ q
2
[1−m2(t)], where q is a constant that depends on a

and v. We note that this relation satisfies the fully-ordered-state condition ρ = 0 when

|m| = 1. We shall see that the exact functional form of q = q(a, v) is irrelevant for the

stability results, as long as q > 0. To simplify calculations even more, we consider that

the network is a degree-regular random graph with degree distribution Pk = δk,µ, that

is, all nodes have exactly µ neighbors chosen at random. Then, replacing the above

expression for the moments into Eq. (19), and substituting ρ by the approximate value
q
2
[1−m2], we arrive to the following closed equation for m

dm

dt
=

(1−m2)

2µa

µ
∑

n=0

Cµ
n n

a
(q

2

)n {

(1 + v)(1 +m)n−1 [1− p(1 +m)]µ−n
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− (1− v)(1−m)n−1 [1− p(1−m)]µ−n
}

, (32)

where mute indices n− and n+ were replaced by the index n. To check the stability of

m = 1, we take m = 1− ǫ in Eq. (32), and expand it to first order in ǫ. We obtain after

some algebra

dǫ

dt
=
µ−a

2
(〈n〉q + 〈na〉q) [V1(a)− v] ǫ, (33)

where the symbols 〈 〉q represent the moments of a Binomial distribution with probability

q, and the bias function V1(a) is defined as

V1(a) =
〈n〉q − 〈na〉q
〈n〉q + 〈na〉q

. (34)

Then, for a fixed value of a the solution m = 1 is stable (unstable), when v is larger

(smaller) than V1(a). The shape of the function V1(a) can be guessed using that for

a larger (smaller) than 1, the moment 〈na〉 is larger (smaller) than 〈n〉. Then V1(a)

goes to (〈n〉 − 1)/(〈n〉+ 1) . 1 and −1 as a approaches to 0 and ∞, respectively. Also

V1(a) = 0, for a = 1. With a similar stability analysis we obtained thatm = −1 is stable

(unstable) for the points (a, v) below (above) the transition line V−1(a) = −V1(a), while

m = m∗ is stable in the region where both m = −1 and m = 1 are unstable. In Fig. 6

we show a picture that summarizes the stability regions defined by the transition lines

V1(a) and V−1(a). These lines were obtained by integrating numerically the two coupled

Eqs. (19) and (20), with the moments defined in Eq. (31), and finding the points (a, v)

where the stationary solutions m = 1,−1 became unstable. We considered two degree-

regular random graphs with degrees µ = 3 [solid lines V3
1 (a) and V3

−1(a)] and µ = 10

[dashed-lines V10
1 (a) and V10

−1(a)], thus we took Pk = δk,µ in the equations. For clarity,

only the stable solutions are labeled in the picture. We observe that as the degree of the

network increases, the coexistence region expands and approaches to the corresponding

region a < 1 on fully connected networks.

In order to give numerical evidence, from Monte Carlo simulations, of the different

phases and transition lines predicted in Fig. 6, we have run spreading experiments as

explained in section 2.1, for a degree-regular random graph (DRRG) with degree µ = 3

and N = 105 nodes, and tested the stability of the homogeneous solutions m = ±1.

We first set the bias in v = 0 and, by varying a, we obtained a transition at ac ≃ 1.0

from dominance to coexistence, as a is decreased: in the dominance region the survival

probability P (t) decays exponentially fast to zero, indicating that m = 1 is stable,

while in the coexistence region P (t) reaches a constant value larger than zero, showing

that m = 1 is unstable (not shown). This transition is the same as the one in fully

connected networks (FCN) (Fig. 3). We then repeated the experiment with v = −0.2,

whose results are summarized in Fig. 7, where we show P (t) for different values of a.

Increasing a from 0, which corresponds to the coexistence regime (m = ±1 are unstable

solutions, and m∗ is stable), we show in Fig. 7(a) how in a DRRG m = −1 changes

from unstable to stable at a value 0.25 < a < 0.3, as P (t) starts to decay to zero. This

corresponds to crossing the line V3
−1 in the horizontal direction (see Fig. 6), and entering
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Figure 6. Stability diagram for the Abrams-Strogatz model on a degree-regular

random graph, obtained by numerical integration of Eqs. (19), (20) and (31). The

solution m = 1 is stable above the line V1, while the solution m = −1 is stable below

the line V−1. Solid and dashed lines correspond to graphs with degrees µ = 3 and

µ = 10 respectively. In the coexistence region, where the stable solution is m∗, the

system is composed by both type of users, while in the dominance region, users of

either one or the other language prevail, depending on the initial state. We observe

that the region of coexistence is reduced, compared to the model on fully connected

networks (Fig. 1), and that there are also two single-dominance regions where always

the same language dominates.

the monostable region where there exist only two solutions, m = −1 stable, and m = +1

unstable (m∗ becomes equal to −1 along the transition line V3
−1). In Fig. 7(b) we observe

how in a DRRG m = +1 becomes stable at a value 1.80 < a < 1.85. This corresponds

to crossing the line V3
1 (see Fig. 6) and entering to the dominance region, where both

m = ±1 are stable. Notice that for a = 1.80, P (t) first curves up and then it quickly

decays to zero at a time t ≃ 4000. This means that a finite fraction of realizations

starting from a system with a single down spin took, in average, a mean time t ≃ 4000

to end up in a configuration with all down spins, showing that m = −1 is a stable

solution. This supports our claim that in the monostable region there exist only two

solutions, m = −1 stable, and m = +1 unstable. These results confirm the existence

of a quite broad single-dominance region in DRRG (0.30 . a . 1.85 for v = −0.2 and

µ = 3), in agreement with the stability diagram obtained in Fig. (6), while this region

seems to be absent in FCN. Indeed, Fig. 7(c) shows how this unstable-stable transition

happens in a FCN at a value 0.93 < a < 1.07, in agreement with the transition line

ac ≃ 1.0 in FCN. Here, both m = ±1 gain stability at the same point, and the system

enters to the dominance region (see Fig 1).

In summary, we find that, compared to the fully connected case, the region of

coexistence is shrunk for v 6= 0, as there appear two regions where only one solution is

stable. These regions also reduce part of the dominance region. The effect of the bias
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Figure 7. Spreading experiments: probability P (t) that the system is still alive at time

t in the Abrams-Strogatz model with bias v = −0, 2 and various values of volatility a,

showing the stability of the solutions m = 1,−1. Dashed curves decay quickly to zero,

indicating that the solution is stable while solid curves represent unstable solutions.

(a) Degree-regular random graph (DRRG). Stability of the solution m = −1: a = 0.25

(solid curve), a = 0.30 (dashed curve). (b) Degree-regular random graph (DRRG).

Stability of the solution m = +1: a = 1.80 (solid curve), a = 1.85 (dashed curve).

(c) Fully connected network (FCN). Stability of the solutions m = ±1: a = 0.93

(solid curve), a = 1.07 (dashed curve). All curves correspond to an average over 105

independent realizations on networks with N = 105 nodes.

is shown to be more important in DRRGs with low connectivity µ and, as a general

result, coexistence becomes harder to achieve in sparse networks.

3. Bilinguals Model

This model can be regarded as an extension of the Abrams-Strogatz model in which,

besides monolingual users X and Y , there is a third class of individuals that use both

languages, that is, bilingual users labeled with state Z. A monolingual X (Y ) becomes

a bilingual with a rate depending on the number of its neighbors that are monolinguals

Y (X), while direct transitions from one class of monolingual to the other are forbidden.

This reflects the fact that individuals that use one language only, are forced to start

using both languages if they want to have a conversation with monolingual users of

the opposite language. For a similar reason, the transition from a bilingual Z to a

monolingual X (Y ) depends on the number of neighbors using language X (Y ), which

includes bilingual agents. Thus, the transition probabilities between states are given by

P (X → Z) = (1− S) σa
y ,

P (Z → Y ) = (1− S) (1 − σx)
a,

P (Y → Z) = S σa
x,
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P (Z → X) = S (1− σy)
a, (35)

where σx, σy and σz are the densities of neighboring speakers in states X , Y and Z

respectively, and S is the prestige of language X .

As in the ASM, it is convenient to consider monolinguals X and Y , as particles

with opposite spins −1 and 1 respectively. Bilinguals are considered as spin-0 particles

because they are a combination of the two opposite states. Given that the model is

invariant under the interchange of −1 and 1 particles, the system is better described

using the global magnetization m ≡ σ+ − σ− and the density of bilinguals σ0, where

σ−,σ0, σ+, are the global densities of nodes in states −1, 0 and 1, respectively. Another

alternative could be the use of the density of connections between different states

ρ ≡ 2σ−σ+ + 2σ−σ0 + 2σ+σ0, but numerical simulations show that ρ and σ0 are

proportional. We now study the evolution of the system on fully connected and complex

networks, by writing equations for m and σ0.

3.1. Fully connected networks

In the fully connected case, the local densities of neighbors in the different states agree

with the global densities σ−,σ0, σ+, thus, using the transition probabilities Eqs. (35),

the rate equations for σ− and σ+ can be written as

dσ−
dt

=
(1− v)

2
σ0(1− σ+)

a − (1 + v)

2
σ−σ

a
+, (36)

dσ+
dt

=
(1 + v)

2
σ0(1− σ−)

a − (1− v)

2
σ+σ

a
−
, (37)

where v ≡ 1−2S is the bias. The rate equations for m = σ+−σ− and σ0 = 1−σ+−σ−
can be derived from the above two equations, and by making the substitutions σs =

(1− σ0 + sm)/2, with s = ±1. We obtain

dm

dt
= 2−(2+a)

{

2σ0 [(1 + v)(1 + σ0 +m)a − (1− v)(1 + σ0 −m)a] (38)

+ (1 + v)(1− σ0 −m)(1− σ0 +m)a − (1− v)(1− σ0 +m)(1− σ0 −m)a
}

and
dσ0
dt

= 2−(2+a)
{

− 2σ0 [(1 + v)(1 + σ0 +m)a + (1− v)(1 + σ0 −m)a] (39)

+ (1 + v)(1− σ0 −m)(1− σ0 +m)a + (1− v)(1− σ0 +m)(1− σ0 −m)a
}

.

Equations (38) and (39) are difficult to integrate analytically, but an insight on

its qualitatively behavior can be obtained by studying the stability of the stationary

solutions with a and v. As in the ASM, we expect that, for a given v, an order-disorder

transition appears at some value ac of the volatility parameter, where the stability of

the stationary solutions changes. If a is small, then flipping rates are high, thus we

expect the system to remain in an active disordered state, while for large enough values

of a spins tend to be aligned, thus the system should ultimately reach full order. We

now calculate the transition point for the symmetric case v = 0, and then find an

approximate solution for the linear case a = 1.
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Figure 8. Spreading experiments: probability P (t) that the system is still alive

at time t in the Bilinguals model on a fully connected network, obtained from

the same spreading experiments and parameters (v = 0, N = 105) as described

in Fig. 3 for the Abrams-Strogatz model. The curves correspond to volatilities

a = 0.600, 0.618, 0.620, 0.622 and 0.700, (top to bottom). P (t) decays as t−δ at the

transition point 0.620 (close to the theoretical value afc ≃ 0.63), with δ ≃ 1.76,

indicated by the dashed line.

3.1.1. Transition point for v = 0 In the symmetric case v = 0 one can easily verify that

the points (m = ±1, σ0 = 0) in the (m, σ0) plane are two stationary solutions of Eqs. (38)

and (39). But there is also a third non-trivial stationary solution (m = 0, σ0 = σ∗

0),

where σ∗

0 satisfies

2σ∗

0(1 + σ∗

0)
a − (1− σ∗

0)
(1+a) = 0. (40)

By doing a small perturbation around (0, σ∗

0) in the σ0 direction, one finds from Eq. (39)

that the point (0, σ∗

0) is stable for all values of a. Instead, the stability in the m direction

changes at some value afc (fc stands for fully connected). Replacing m by ǫ ≪ 1 and

σ0 by σ
∗

0 in Eq. (38), one arrives to the following relation that σ∗

0 and afc hold when the

stability changes

2 afc σ
∗

0(1 + σ∗

0)
(afc−1) + (afc − 1)(1− σ∗

0)
afc = 0. (41)

Combining Eqs. (40) and (41), one arrives to the following closed equation for afc

afc ln

(

1− afc
afc

)

= ln

(

2afc − 1

1− afc

)

, (42)

whose solution is afc ≃ 0.63. Then, assuming that the transition point does not depend

on v for FCN, as it happens in the ASM, we find that the (a, v) plane is divided into two

regions. In the region a < afc, the stable solution is (0, σ∗

0), representing a stable mix of

the three kinds of individuals, while in the region a > afc, the stable solutions (±1, 0)

indicate the ultimate dominance of one of the languages. By performing spreading

experiments we estimated that the transition point for a network of N = 105 nodes is

around a = 0.62 (see Fig. 8), and we observed that this value approaches to the analytical
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one afc ≃ 0.63 as N increases. We have also checked numerically the transition point

when there is a bias (v 6= 0), that is, when the two languages are not equivalent. In this

case we found a transition around a = 0.675 for a bias v = −0.2 and N = 105 nodes,

what represents a small deviation from afc. However this difference is similar to the one

found for the ASM in Section 2.1.1 with the same system size. Therefore, we assume

that this discrepancy is again due to finite size effects and, in the thermodynamic limit,

the transition should be at afc, for any value of v.

We note that the transition point afc ≃ 0.63 is smaller than the corresponding

value ac ≃ 1.0 for the ASM, thus the region for coexistence is reduced in the BM. This

has a striking consequence. Suppose that there is population with individuals that can

use only one of two languages at a time, and it is characterized by a volatility a = 0.8,

that allows the stable coexistence of the two languages. If now the behavior of the

individuals is changed, so that they can use both languages before they start using

the opposite language, the population looses the coexistence and finally approaches to

a state with the complete dominance of one language. In other words, within these

models, bilinguals in use hinder language coexistence.

3.1.2. AB Model: Neutral volatility and symmetric case For a = 1 and v = 0, Eqs. (38)

and (39) are reduced to

dm

dt
=

1

2
σ0m, (43)

dσ0
dt

=
1

4
(1−m2 − 4σ0 − σ2

0). (44)

The three stationary solutions are (m, σ0) = (−1, 0); (1, 0) and (0,
√
5 − 2). Given

that the above equations are difficult to integrate analytically, we try an a approximate

solution by assuming that the density of bilinguals is proportional to the interface density

ρ, something observed in our simulations, and already found in [16] for the AB-model

(equivalent to the BM in the case v = 0 and a = 1). Bilinguals are at the interface

between monolinguals, for all the networks studied. Then we write σ0 ≃ αρ, where α is

a constant and ρ = 2σ−σ++2σ0(σ−+σ+) =
1
2
[(1− σ0)

2 −m2]+2σ0(1−σ0), from where

we obtain thatm can be expressed in terms of σ0 asm
2 = (1−σ0)2+4σ0(1−σ0)−2σ0/α.

Replacing this expression for m2 into Eq. (44), we obtain the following equation for σ0

dσ0
dt

=
σ0
2
(−3 +

1

α
+ σ0). (45)

We have checked by numerical simulations that α > 1/3, then the solution of the above

equation in the long time limit is σ0 ∼ e(−3+1/α)t/2. Therefore, σ0 and |m| approach to

0 and 1, respectively, and the system reaches full order exponentially fast.
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3.2. Complex networks

We now consider the model on complex networks. Following the same approach as in

Section 2.2, it is possible to write down a set of nine coupled differential equations: three

for the densities σ−, σ0 and σ+ of node states, and six for the densities ρ−−, ρ−0, ρ+0,

ρ+−, ρ+0 and ρ++ of different types of links. However, due to the complexity of these

equations, we have limited our study to the investigation of the stability regions through

Monte Carlo simulations. We found that in a degree-regular random graph with mean

degree µ = 3, the stability diagram is qualitatively similar to the one in Fig. 6 for the

ASM, where the coexistence region corresponds to stationary states with a mix of the

three types of speakers. Also, the coexistence-dominance transition point for v = 0 is

at acn ≃ 0.3 (cn stands for complex networks). For v = −0.02, a monostable region

appears for 0.2 . a . 0.4, while this region becomes wider for v = −0.2 (0 . a . 1.4).

We have also observed that the coexistence region disappears for |v| ≥ 0.2. Therefore,

in the BM, the region for coexistence also shrinks as the connectivity of the network

decreases (going from fully connected to complex networks with low degree), but on

top of that, there exists a shift of the critical value from afc ≃ 0.63 (fully connected

networks) to acn ≃ 0.3 (degree-regular random graphs). In summary, compared to the

ASM, the overall effect of the inclusion of bilingual agents is that of a large reduction

of the region of coexistence.

4. Square lattices

Dynamical properties of the ASM and BM in square lattices can be explored for different

initial conditions, system sizes, and values of the prestige and volatility parameters,

through a simulation applet available online [31]. It turns out that the behavior of

these models in square lattices is very different to their behavior in fully connected

or complex networks. On the one hand, the mean distance between two sites in the

lattice grows linearly with the length of the lattice side L, thus a spin only “feels”

the spins that are in its near neighborhood, and therefore the mean-field approach

that works well in fully connected networks gives poor results in lattices. On the

other hand, correlations between second, third and higher order nearest-neighbors are

important in lattices, what causes the formation of same-spin domains, unlike in random

networks where correlations to second nearest-neighbors are already negligible. Thus,

pair approximation does not provide a good enough description of the dynamics in

lattices either, and one is forced to implement higher order approximations (triplets,

quadruplets, etc), that lead to a coupled system of many equations, impossible to solve

analytically. Due to the fact that the mean-field and pair approximations, that use

global quantities such as the magnetization and the density of opposite-state links to

describe the system, do not give good results in lattices, we follow here a different

approach to obtain a macroscopic description. This approach, also developed in [26] for

general nonequilibrium spin models consists in deriving a macroscopic equation for the
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evolution of a continuous space dependent spin field. Within this approach it is possible

to describe coarsening processes, that is, processes of growth of local linguistic domains

caused by the motion of linguistic boundaries (interface motion). In particular, one can

explain whether the system orders or not, or if the ordering is curvature driven (interface

motion due to surface tension reduction) or noise driven (without surface tension).

We focus here on the ASM, but this macroscopic description can also be applied

for systems with three states, as the BM (see [24]). Given that neighboring spins

tend to be aligned -due to the ferromagnetic nature of the interactions-, and also

correlations between spins reinforce the alignment between far neighbors, the dynamics

is characterized by the formation of same-spin domains. Starting from a well-mixed

system with up and down spins randomly distributed over the lattice, after a small

transient, if we look at the lattice from far we see domains growing and shrinking

slowly with time, and we can interpret this dynamics at the coarse-grained level as the

evolution of a continuous spin field φ over space and time. Then, we define by φ
r
(t) the

spin field at site r at time t, which is a continuous representation of the spin at that site

(−1 < φ < 1), also interpreted as the average value of the spin over many realizations

of the dynamics. Thus, we assume that there are Ω spin particles at each site of the

lattice, and we replace φ
r
(t) by the average spin value φ

r
(t) → 1

Ω

∑Ω
j=1 S

j
r
, where Sj

r
is

the spin of the j-th particle inside site r. Within this formulation, the dynamics is the

following. In a time step of length δt = 1/Ω, a site r and a particle from that site are

chosen at random. The probability that the chosen particle has spin s = ±1 is equal to

the fraction of ± spins in that site (1± φ
r
)/2. Then the spin flips with probability

P (s→ −s) = 1

2
(1− sv)

(

1− sψ
r

2

)a

, (46)

where ψ
r
→ 1

4

∑

r
′/r φr

′(t) is the average neighboring field of site r, and the sum is over

the 4 first nearest-neighbors sites r′ of site r. If the flip happens, φ
r
changes by −2s/Ω,

thus its average change in time is given by the rate equation

∂φ
r
(t)

∂t
= [1− φ

r
(t)]P (− → +)− [1 + φ

r
(t)]P (+ → −), (47)

where the first (second) term corresponds to a − → + (+ → −) flip event. In order to

obtain a closed equation for φ (see Appendix A for details), we substitute the expression

for the transition probabilities Eq. (46) into Eq. (47), we then expand around ψ
r
= 0,

and replace the neighboring field ψ
r
by φ

r
+ ∆φ

r
, where ∆ is defined as the standard

Laplacian operator ∆φ
r
≡ 1

4

∑

r
′/r (φr

′ − φ
r
) = ψ

r
− φ

r
. Keeping the expansion up to

first order in ∆φ
r
, results in the following equation for the spin field

∂φ
r
(t)

∂t
= 2−a

(

1− φ2
r

)

[

v + (a− 1)φ
r
+
v

2
(a− 1)(a− 2)φ2

r

+
1

6
(a− 1)(a− 2)(a− 3)φ3

r

]

+ 2−aa

[

1 + v(a− 2)φ
r
+

1

2
(a− 1)(a− 4)φ2

r

]

∆φ
r
. (48)
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Figure 9. Ginzburg-Landau potential Eq. (52) for the symmetric case v = 0 of the

Abrams-Strogatz model, with volatility values a = 0.5, 0.8, 1.0, 1.2 and 2.0 (from top

to bottom). For a = 0.5 and 0.8 the system relaxes to an active state with the same

fraction of up and down spins uniformly distributed over the space, corresponding to

the minimum of the potential at φ = 0, while for a = 1.2 and 2.0 it reaches full order,

described by the field |φ| = 1.

Equation (48) can be written in the form of a time dependent Ginzburg-Landau equation

∂φ
r
(t)

∂t
= D(φ

r
)∆φ

r
− ∂Va,v(φr

)

∂φ
r

, (49)

with diffusion coefficient

D(φ
r
) ≡ 2−aa

[

1 + v(a− 2)φ
r
+

1

2
(a− 1)(a− 4)φ2

r

]

(50)

and potential

Va,v(φr
) ≡ 2−a

{

−vφ
r
− 1

2
(a− 1)φ2

r
+
v

6
[2− (a− 1)(a− 2)]φ3

r

+
1

24
(a− 1) [6− (a− 2)(a− 3)]φ4

r
+

v

10
(a− 1)(a− 2)φ5

r

+
1

36
(a− 1)(a− 2)(a− 3)φ6

r

}

, (51)

which is analogous to the potential for the global magnetization m in the fully connected

network case (Fig. 4). As we already discussed in section 2.1, for the asymmetric case

v 6= 0 the ordering dynamics is strongly determined by v. When a > 1, Va,v has the

shape of a double-well potential with minima at φ = ±1, and with a well deeper than

the other, thus the system is quickly driven by the bias towards the lowest minimum,

reaching full order in a rather short time. For a < 1 there is a minimum at |φ| < 1, thus

the system relaxes to a partially ordered state of language coexistence composed by a

well mixed population with different proportions of speakers of the two languages.
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Specially interesting is the analysis of the symmetric case v = 0, for which the

potential is (see Fig. 9)

Va(φr
) = 2−a(a− 1)

{

−φ
2
r

2
+ [6− (a− 2)(a− 3)]

φ4
r

24
+ (a− 2)(a− 3)

φ6
r

36

}

.

(52)

In this bias-free case, when a < 1 the minimum is at φ = 0, thus the average

magnetization in a small region around a given point r is zero, indicating that the system

remains disordered (language coexistence). This can be seen in Fig. 10(b), where we

show a snapshot of the lattice for the model with v = 0 and a = 0.5, after it has reached a

stationary configuration. For a > 1 the potential has two wells with minima at φ = ±1,

but with the same depth, thus there is no preference for any of the two states, and

the system orders in either of the language dominance states by spontaneous symmetry

breaking. The order-disorder nonequilibrium transition at a = 1 is reminiscent of the

well known Ising model transition, but with the volatility parameter a playing the role

of temperature: high volatility a < 1 corresponds to the high temperature paramagnetic

phase and low volatility to the low temperature phase. An important difference is that

the transition is here first order, since the low volatility stable sates φ = ±1 appear

discontinuously at a = 1. In addition, while in the low temperature phase of the Ising

model, spins flip in the bulk of ordered domains by thermal fluctuations, here, spin flips

in the low volatility regime only occur at the interfaces (domain boundaries).

Complete ordering for a > 1 is achieved through domain coarsening driven by

surface tension [32]. That is, as the system evolves, same-spin domains are formed, small

domains tend to shrink and disappear while large domains tend to grow. Figure 10(d)

shows a snapshot of the lattice for the evolution of the model with a = 2. We observe

that domains have rounded boundaries given that the dynamics tends to reduce their

curvature, leading to an average domain length that grows with time as l ∼ t1/2 [16, 24].

For the special case a = 1 (voter model) the potential is Va = 0, there is still coarsening

but without surface tension, meaning that domain boundaries are driven by noise, as

seen in Fig. 10(c). As a consequence of this, the average length of domains grows very

slowly with time, as l ∼ ln t [33, 34, 35].

In order to compare the behavior of the language competition models described

before in fully connected and complex networks with their behavior in square lattices

we have numerically explored the stability regions in the (a, v) plane for the ASM and

BM in square lattices. The coexistence-dominance transition in the ASM for v = 0 is at

ac ≃ 1.0, as in fully connected and complex networks, whereas the region for coexistence

is found to be much more narrow than the ones observed in complex networks with low

degree, like the one depicted in Fig. 6 for µ = 3. Using the simulation applet [31] one can

check that for a given value of v 6= 0, the disordered stationary state that characterizes

coexistence is harder to maintain in square lattices than in random networks: in order

to have an equivalent situation, a smaller value of a is needed in the former case.

In the BM, apart from the narrowing of the coexistence region, we also found that

the transition point for v = 0 is shifted to an even smaller value of the volatility a than
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(a) (b)

(c) (d)

Figure 10. Snapshots of the Abrams-strogatz model with bias v = 0 on a 128× 128

square lattice and three values of volatility, a = 0.5 (b), a = 1.0 (c) and a = 2.0 (d).

(a) Initial state: each site is occupied with a spin +1 or −1 with the same probability

1/2. (b) The system reaches an active disordered stationary state, with a global

magnetization that fluctuates around zero. (c) The system displays coarsening driven

by noise, characterized by domains with noisy boundaries. (d) There is also coarsening

but driven by surface tension, generating domains with more rounded boundaries.

in complex networks. To see this, in Fig. 11 we show the time evolution of the inverse

of the average interface density 〈ρ〉 ‡ for various values of a, on a square lattice of size

N = 4002. We observe that 〈ρ〉 decays to zero for values of a > 0.16, indicating that

the system orders (dominance phase), while 〈ρ〉 approaches to a constant value larger

than zero for a < 0.16, thus the system remains disordered (coexistence phase). At the

transition point asl ≃ 0.16 we have that 〈ρ〉 ∼ 1/ ln(t), indicating that the transition

belongs to the Generalized Voter class, a typical transition observed in spin systems

with two symmetric absorbing states [25, 26, 36, 37].

The fact that asl ≃ 0.16 is smaller than the corresponding transition points

afc ≃ 0.63 and acn ≃ 0.3, together with the narrowing effect mentioned above, leads to

the result that the region for coexistence is largely reduced in square lattices, compared

to fully connected and complex networks.

‡ The 〈...〉 indicates average over independent realizations of the dynamics with different random initial

conditions.
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Figure 11. Inverse of the average interface density 〈ρ〉 vs time, on a log-linear scale,

for the Bilinguals model. From top to bottom: a = 0.30, 0.20, 0.17, 0.16, 0.15 and

0.10. Averages were done over 103 independent realizations on a square lattice of side

L = 400. 〈ρ〉 decays as 1/ ln(t) at the transition point asl ≃ 0.16 (solid squares),

corresponding to the behavior of a Generalized voter transition in two dimensions.

5. Summary and conclusions

We have discussed the order-disorder transitions that occur in the volatility-prestige

parameter space of two related models of language competition dynamics, the Abrams-

Strogatz and its extension to account for bilingualism: the Bilinguals Model. We have

analyzed their microscopic dynamics on fully connected, complex random networks

and two-dimensional square lattices and constructed macroscopic descriptions of these

dynamics accounting for the observed transitions. At a general level, we have found that

both models share the same qualitative behavior, showing a transition from coexistence

to dominance of one of the languages at a critical value of the volatility parameter

ac. The fact that agents are highly volatile (a < ac), i.e, loosely attached to the

language they are currently using, leads to the enhancement of language coexistence.

On the contrary, in a low volatility regime (a > ac), the final state is one of

dominance/extinction.

A more detailed comparison of both models shows important differences: In the

mean field description for fully connected networks, and for the ASM, a scenario of

coexistence is obtained for a < 1. This is independent of the relative prestige of the

languages, v. However, the stationary fraction of agents in the more prestigious language

increases with a higher prestige. But when bilingual agents are introduced (BM), the

scenario of coexistence becomes the parameter space area corresponding to a < 0.63.

That is, the area of coexistence is reduced: agents with a higher level of volatility (smaller

a) are needed in order to obtain a coexistence regime. Within this current framework,

allowing the agents to use two languages at the same time, which is reasonable from a
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sociolinguistic point of view, has the effect of making language coexistence more difficult

to achieve, in the sense that coexistence occurs for a smaller range of parameters.

Network topology and local effects have been addressed through pair approxima-

tions for degree uncorrelated networks. For the ASM on degree-regular random networks

we find that the decrease of the network connectivity leads to a reduction, in the param-

eter space (a, v), of the area of language coexistence and the area of bistable dominance,

while monostable dominance regions appear, in which only the state of dominance of

the more prestigious language is stable. To gain intuition on this result, we first notice

that in the fully connected network, the area of coexistence (a < 1) corresponds to a

situation in which the majority of the agents use the more prestigious language. The

fact that all agents are interconnected, translates to a situation in which users of the less

prestigious language (minority) are in contact with every other agent in the network.

In this situation, high volatility (agents switching their language use easily) is effective

in order to achieve a steady state situation with individuals continuously changing the

use of their language and making coexistence possible. In contrast, when considering

a degree-regular random network, that is, when limiting the number of neighbors in a

society, the existence of bias (v 6= 0) opens the possibility for agents in the majority

language to be placed in domains without contact with the minority language. For a

region of the parameter space where there is coexistence in a fully connected network,

these domains can grow in size in a random network until they occupy the entire system.

This gives rise to the monostable region of dominance of the more prestigious language

found in complex networks with low connectivity. Compared to the fully connected case,

a higher volatility is needed in order to overcome this topological effect, leading to a

reduction of the area of coexistence. In two dimensional square lattices the coexistence

is shown to be even more difficult to achieve, probably due to the fact that correlations

with second neighbors make the coarsening process of formation and growth of domains

easier. The macroscopic field description introduced for square lattices accounts for the

different coarsening processes observed for large and small volatility.

The network effects described above for the ASM are also qualitatively valid for

the BM. However, the reduction of the area of language coexistence is more important

when considering bilingual agents. We find a shift of the critical value with the topology:

afc ≃ 0.63 in fully connected networks, acn ≃ 0.3 in complex uncorrelated networks,

and asl ≃ 0.16 in two dimensional square lattices.

In summary, building upon previous works on language competition [5, 14, 15], we

have studied numerically and by analytical macroscopic descriptions, two microscopic

models for the dynamics of language competition. We have analyzed the role of

bilingual agents and social network structure in the order-disorder transitions occurring

for different values of the two parameters of the models: the relative prestige of the

languages and the volatility of the agents. We have found that the scenario of coexistence

of the two languages is reduced when bilingual agents are considered. This reduction

also depends on the social structure, with the region of coexistence shrinking when the

connectivity of the network decreases.
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Appendix A. Equation for the spin field φ
r

In this section we shall derive an equation for the spin field φ
r
. We start by substituting

the expression for the transition probabilities Eq. (46) into Eq. (47) and by writing it

in the more convenient form

∂φ

∂t
=

(1 + v)

2a+1
(1− φ)(1 + ψ)(1 + ψ)a−1 − (1− v)

2a+1
(1 + φ)(1− ψ)(1− ψ)a−1,

(A.1)

where φ and ψ are abbreviated forms of φ
r
and ψ

r
respectively. We now replace the

neighboring field ψ in the terms (1+ψ) and (1−ψ) of Eq. (A.1) by ψ ≡ φ+∆φ, where

∆ is defined as the standard Laplacian operator ∆φ
r
≡ 1

4

∑

r
′/r (φr

′ − φ
r
) = ψ

r
− φ

r
,

and obtain

∂φ

∂t
= 2−(a+1)(1− φ2)

[

(1 + v)(1 + ψ)a−1 − (1− v)(1− ψ)a−1
]

(A.2)

+ 2−(a+1)
[

(1 + v)(1− φ)(1 + ψ)a−1 + (1− v)(1 + φ)(1− ψ)a−1
]

∆φ.

Because our idea is to obtain a Ginzburg-Landau equation with a φ6-potential, the right

hand side of Eq. (A.3) must be proportional to φ5, and therefore we use the Taylor series

expansions around ψ = 0

(1± ψ)a−1 = 1 + (a− 1)ψ +
1

2
(a− 1)(a− 2)ψ2 +

1

6
(a− 1)(a− 2)(a− 3)ψ3 and

(1− ψ)a−1 = 1− (a− 1)ψ +
1

2
(a− 1)(a− 2)ψ2 − 1

6
(a− 1)(a− 2)(a− 3)ψ3

into Eq. (A.3), to obtain

∂φ

∂t
= 2−a(1− φ2)

[

v + (a− 1)ψ +
v

2
(a− 1)(a− 2)ψ2 +

1

6
(a− 1)(a− 2)(a− 3)ψ3

]

+ 2−a

{

(1− vφ)

[

1 +
1

2
(a− 1)(a− 2)ψ2

]

+ (v − φ)

[

(a− 1)ψ +
1

6
(a− 1)(a− 2)(a− 3)ψ3

]}

∆φ. (A.3)

We then replace ψ by φ+∆φ in Eq. (A.3) and expand to first order in ∆φ, assuming that

the field φ is smooth, so that ∆φ ≪ φ. Finally, neglecting φ3 and higher order terms in

the diffusion coefficient that multiplies the laplacian, we arrive to the expression for the

spin field quoted in Eq. (48).
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