76 research outputs found
Generative discriminative models for multivariate inference and statistical mapping in medical imaging
This paper presents a general framework for obtaining interpretable
multivariate discriminative models that allow efficient statistical inference
for neuroimage analysis. The framework, termed generative discriminative
machine (GDM), augments discriminative models with a generative regularization
term. We demonstrate that the proposed formulation can be optimized in closed
form and in dual space, allowing efficient computation for high dimensional
neuroimaging datasets. Furthermore, we provide an analytic estimation of the
null distribution of the model parameters, which enables efficient statistical
inference and p-value computation without the need for permutation testing. We
compared the proposed method with both purely generative and discriminative
learning methods in two large structural magnetic resonance imaging (sMRI)
datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using
the AD dataset, we demonstrated the ability of GDM to robustly handle
confounding variations. Using Schizophrenia dataset, we demonstrated the
ability of GDM to handle multi-site studies. Taken together, the results
underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding
Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data
Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample
Automatic ROI Selection in Structural Brain MRI Using SOM 3D Projection
This paper presents a method for selecting Regions of Interest (ROI) in brain Magnetic Resonance Imaging (MRI) for diagnostic purposes, using statistical learning and vector quantization techniques. The proposed method models the distribution of GM and WM tissues grouping the voxels belonging to each tissue in ROIs associated to a specific neurological disorder. Tissue distribution of normal and abnormal images is modelled by a Self-Organizing map (SOM), generating a set of representative prototypes, and the receptive field (RF) of each SOM prototype defines a ROI. Moreover, the proposed method computes the relative importance of each ROI by means of its discriminative power. The devised method has been assessed using 818 images from the Alzheimer's disease Neuroimaging Initiative (ADNI) which were previously segmented through Statistical Parametric Mapping (SPM). The proposed algorithm was used over these images to parcel ROIs associated to the Alzheimer's Disease (AD). Additionally, this method can be used to extract a reduced set of discriminative features for classification, since it compresses discriminative information contained in the brain. Voxels marked by ROIs which were computed using the proposed method, yield classification results up to 90% of accuracy for controls (CN) and Alzheimer's disease (AD) patients, and 84% of accuracy for Mild Cognitive Impairment (MCI) and AD patients.This work was partly supported by the MICINN under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. Data collection and sharing for this project was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer's Association; Alzheimer's Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRxResearch; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer's Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California
A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data
We introduce a wide and deep neural network for prediction of progression
from patients with mild cognitive impairment to Alzheimer's disease.
Information from anatomical shape and tabular clinical data (demographics,
biomarkers) are fused in a single neural network. The network is invariant to
shape transformations and avoids the need to identify point correspondences
between shapes. To account for right censored time-to-event data, i.e., when it
is only known that a patient did not develop Alzheimer's disease up to a
particular time point, we employ a loss commonly used in survival analysis. Our
network is trained end-to-end to combine information from a patient's
hippocampus shape and clinical biomarkers. Our experiments on data from the
Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model
is able to learn a shape descriptor that augments clinical biomarkers and
outperforms a deep neural network on shape alone and a linear model on common
clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop,
ECML-PKDD 201
Learning Biomarker Models for Progression Estimation of Alzheimer’s Disease
Being able to estimate a patient’s progress in the course of Alzheimer’s disease and predicting future progression based on a number of observed biomarker values is of great interest for patients, clinicians and researchers alike. In this work, an approach for disease progress estimation is presented. Based on a set of subjects that convert to a more severe disease stage during the study, models that describe typical trajectories of biomarker values in the course of disease are learned using quantile regression. A novel probabilistic method is then derived to estimate the current disease progress as well as the rate of progression of an individual by fitting acquired biomarkers to the models. A particular strength of the method is its ability to naturally handle missing data. This means, it is applicable even if individual biomarker measurements are missing for a subject without requiring a retraining of the model. The functionality of the presented method is demonstrated using synthetic and—employing cognitive scores and image-based biomarkers—real data from the ADNI study. Further, three possible applications for progress estimation are demonstrated to underline the versatility of the approach: classification, construction of a spatio-temporal disease progression atlas and prediction of future disease progression
ChemInform Abstract: ACTION OF NUCLEOPHILIC REAGENTS ON TRICARBONYL(CHLOROSULFONYL)CYCLOBUTADIENEIRON. I. PREPARATION OF AMINOTRICARBONYLCHLOROSULFONYLCYCLOBUTADIENEIRON AND ITS DERIVATIVES
- …
