482 research outputs found

    Hardy type spaces on certain noncompact manifolds and applications

    Get PDF
    In this paper we consider a complete connected noncompact Riemannian manifold M with Ricci curvature bounded from below, positive injectivity radius and spectral gap b. We introduce a sequence X^1(M), X^2(M), ... of new Hardy spaces on M, the sequence Y^1(M/, Y^2(M), ... of their dual spaces, and show that these spaces may be used to obtain endpoint estimates for purely imaginary powers of the Laplace-Beltrami operator and for more general spectral multipliers associated to the Laplace--Beltrami operator L on M. Under the additional condition that the volume of the geodesic balls of radius r is controlled by C r^a e^{2\sqrt{b} r} for some real number a and for all large r, we prove also an endpoint result for first order Riesz transforms D L^{-1/2}. In particular, these results apply to Riemannian symmetric spaces of the noncompact type.Comment: 27 pages, v2: the first version has been revised and rearranged, with additions, in two papers, of which this new version is the first. The second paper is posted as arXiv:1002.1161v

    Phase transitions and phase diagram of the ferroelectric perovskite NBT-BT by anelastic and dielectric measurements

    Full text link
    The complex elastic compliance and dielectric susceptibility of (Na_{0.5}Bi_{0.5})_{1-x}Ba_{x}TiO_{3} (NBT-BT) have been measured in the composition range between pure NBT and the morphotropic phase boundary included, 0 <= x <= 0.08. The compliance of NBT presents sharp peaks at the rhombohedral/tetragonal and tetragonal/cubic transitions, allowing the determination of the tetragonal region of the phase diagram, up to now impossible due to the strong lattice disorder and small distortions and polarizations involved. In spite of ample evidence of disorder and structural heterogeneity, the R-T transition remains sharp up to x = 0.06, whereas the T-C transition merges into the diffuse and relaxor-like transition associated with broad maxima of the dielectric and elastic susceptibilities. An attempt is made at relating the different features in the anelastic and dielectric curves to different modes of octahedral rotations and polar cation shifts. The possibility is also considered that the cation displacements locally have monoclinic symmetry, as for PZT near the morphotropic phase boundary.Comment: 11 pages, 9 figures, submitted to Phys. Rev.

    Low-temperature phase transformations of PZT in the morphotropic phase-boundary region

    Full text link
    We present anelastic and dielectric spectroscopy measurements of PbZr(1-x)Ti(x)O(3) with 0.455 < x < 0.53, which provide new information on the low temperature phase transitions. The tetragonal-to-monoclinic transformation is first-order for x < 0.48 and causes a softening of the polycrystal Young's modulus whose amplitude may exceed the one at the cubic-to-tetragonal transformation; this is explainable in terms of linear coupling between shear strain components and tilting angle of polarization in the monoclinic phase. The transition involving rotations of the octahedra below 200 K is visible both in the dielectric and anelastic losses, and it extends within the tetragonal phase, as predicted by recent first-principle calculations.Comment: 4 pages, 4 figure

    Smart Textile: Exploration of Wireless Sensing Capabilities

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordE-textile is a developing technology joining the advantages of material science and information and communication technologies. In this work, we present the development and assessment of smart textile system containing sensing, processing and wireless communication capabilities. We demonstrate a wearable temperature sensing system based on resistance temperature detection approach utilizing graphene technology, which allows high flexibility and robustness of the electronic textile. The developed sensing system demonstrates experimental sensitivity as high as 80Ω/°C within the temperature detection range from 24 °C to 35 °C, which is the highest reported to date for wearable temperature sensors. In terms of wireless communication, the system operates at 2.4 GHz supporting Bluetooth low energy technology and securely transmits the measured data for up to 10 m which is proved by received signal strength and link quality indicators

    Biomolecule-polymer hybrid compartments: combining the best of both worlds

    Get PDF
    Compartmentalization is a fundamental principle in biology that is needed for the temporal and spatial separation of chemically incompatible reactions and biomolecules. Nano- or micro-sized compartments made of synthetic polymers are used to mimick this principle. The self-assembly of these polymers into vesicular objects is highly compatible with the integration of biomolecules, either into the lumen, the membrane or onto the surface of the vesicles. Thus, a great variety of biohybrid nano- and microscaled compartments has been developed exploiting the specific function and properties of targeting peptides, antibodies, enzymes, nucleic acids or lipids. Such biohybrid compartments have moved from simple systems encapsulating e.g. a model protein into complex multicompartmentalized structures that are able to combine the activity of different biomolecular cargos getting closer to the realization of artifical organelles or cells. Encapsulation of medically relevant cargos combined with careful design of the polymeric scaffold and specific surface functionalization have led to a significant progress in therapeutical applications such as targeted drug delivery or enzyme replacement therapy

    Hydrogen tunneling in the perovskite ionic conductor BaCe(1-x)Y(x)O(3-d)

    Full text link
    We present low-temperature anelastic and dielectric spectroscopy measurements on the perovskite ionic conductor BaCe(1-x)Y(x)O(3-x/2) in the protonated, deuterated and outgassed states. Three main relaxation processes are ascribed to proton migration, reorientation about an Y dopant and tunneling around a same O atom. An additional relaxation maximum appears only in the dielectric spectrum around 60 K, and does not involve H motion, but may be of electronic origin, e.g. small polaron hopping. The peak at the lowest temperature, assigned to H tunneling, has been fitted with a relaxation rate presenting crossovers from one-phonon transitions, nearly independent of temperature, to two-phonon processes, varying as T^7, to Arrhenius-like. Substituting H with D lowers the overall rate by 8 times. The corresponding peak in the dielectric loss has an intensity nearly 40 times smaller than expected from the classical reorientation of the electric dipole associated with the OH complex. This fact is discussed in terms of coherent tunneling states of H in a cubic and orthorhombically distorted lattice, possibly indicating that only H in the symmetric regions of twin boundaries exhibit tunneling, and in terms of reduction of the effective dipole due to lattice polarization.Comment: submitted to Phys. Rev.

    Homogeneously Bright, Flexible, and Foldable Lighting Devices with Functionalized Graphene Electrodes.

    Get PDF
    Alternating current electroluminescent technology allows the fabrication of large area, flat and flexible lights. Presently the maximum size of a continuous panel is limited by the high resistivity of available transparent electrode materials causing a visible gradient of brightness. Here, we demonstrate that the use of the best known transparent conductor FeCl3-intercalated few-layer graphene boosts the brightness of electroluminescent devices by 49% compared to pristine graphene. Intensity gradients observed for high aspect ratio devices are undetectable when using these highly conductive electrodes. Flat lights on polymer substrates are found to be resilient to repeated and flexural strains.S. Russo and M.F. Craciun acknoweldge financial support from EPSRC (Grant no. EP/J000396/1, EP/K017160/1, EP/K010050/1, EPG036101/1, EP/M001024/1, EPM002438/1) and from the Leverhulme Trust (Research grant title Quantum Drums)

    Strong Correlations in Electron Doped Phthalocyanine Conductors Near Half Filling

    Full text link
    We propose that electron doped nontransition metal-phthalocyanines (MPc) like ZnPc and MgPc, similar to those very recently reported, should constitute novel strongly correlated metals. Due to orbital degeneracy, Jahn-Teller coupling and Hund's rule exchange, and with a large on-site Coulomb repulsion, these molecular conductors should display, particularly near half filling at two electrons/molecule, very unconventional properties, including Mott insulators, strongly correlated superconductivity, and other intriguing phases.Comment: 4 pages, 1 figure, submited to PR

    2D WS2 liquid crystals: tunable functionality enabling diverse applications

    Get PDF
    This is the final version. Available on open access from Royal Society of Chemistry via the DOI in this recordThe first observation of liquid crystalline dispersions of liquid phase-exfoliated tungsten disulfide flakes is reported in a range of organic solvents. The liquid crystals demonstrate significant birefringence as observed in the linear and circular dichroism measurements respectively. In particular, linear dichroism is observed throughout the visible range while broad-band circular dichroism can be observed in the range from 500-800 nm. Under an applied magnetic field of ±1.5 T the circular dichroism can be switched ON/OFF, while the wavelength range for switching can be tuned from large to narrow range by the proper selection of the host solvent. In combination with photoluminescence capabilities of WS2, this opens a pathway to a wide variety of applications, such as deposition of highly uniform films over large areas for photovoltaic and terahertz devices.Engineering and Physical Sciences Research Council (EPSRC)Royal Societ
    • …
    corecore