3 research outputs found

    Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe

    No full text
    Europe's capacity to explore the envisaged pathways that achieve its near- and long-term energy and climate objectives needs to be significantly enhanced. In this perspective, we discuss how this capacity is supported by energy and climate-economy models, and how international modelling teams are organised within structured communication channels and consortia as well as coordinate multi-model analyses to provide robust scientific evidence. Noting the lack of such a dedicated channel for the highly active yet currently fragmented European modelling landscape, we highlight the importance of transparency of modelling capabilities and processes, harmonisation of modelling parameters, disclosure of input and output datasets, interlinkages among models of different geographic granularity, and employment of models that transcend the highly harmonised core of tools used in model inter-comparisons. Finally, drawing from the COVID-19 pandemic, we discuss the need to expand the modelling comfort zone, by exploring extreme scenarios, disruptive innovations, and questions that transcend the energy and climate goals across the sustainability spectrum. A comprehensive and comprehensible multi-model framework offers a real example of “collective” science diplomacy, as an instrument to further support the ambitious goals of the EU Green Deal, in compliance with the EU claim to responsible research

    Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe

    Get PDF
    Europe's capacity to explore the envisaged pathways that achieve its near- and long-term energy and climate objectives needs to be significantly enhanced. In this perspective, we discuss how this capacity is supported by energy and climate-economy models, and how international modelling teams are organised within structured communication channels and consortia as well as coordinate multi-model analyses to provide robust scientific evidence. Noting the lack of such a dedicated channel for the highly active yet currently fragmented European modelling landscape, we highlight the importance of transparency of modelling capabilities and processes, harmonisation of modelling parameters, disclosure of input and output datasets, interlinkages among models of different geographic granularity, and employment of models that transcend the highly harmonised core of tools used in model inter-comparisons. Finally, drawing from the COVID-19 pandemic, we discuss the need to expand the modelling comfort zone, by exploring extreme scenarios, disruptive innovations, and questions that transcend the energy and climate goals across the sustainability spectrum. A comprehensive and comprehensible multi-model framework offers a real example of “collective” science diplomacy, as an instrument to further support the ambitious goals of the EU Green Deal, in compliance with the EU claim to responsible research

    Observation of the Gamma-Ray Binary HESS J0632+057 with the HESS, MAGIC, and VERITAS Telescopes

    No full text
    The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 4.4 days is reported, consistent with the period of 317.3 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems
    corecore