92 research outputs found
Detection of subclinical mastitis in camels (Camelus dromedarius) using somatic cell count, N-acetyl-beta-D-glucosaminidase and lactate dehydrogenase activity
Clinical and subclinical mastitis (SCM), mostly related to intramammary infection (IMI), is prevalent in pastoralist camel herds. An IMI has implications for public and animal health as well as for household economy. As bacterial culturing is expensive, time consuming and impractical in a pastoralist setting, other early detection methods for SCM in camels need to be investigated. Somatic cell count (SCC) is the standard for detecting SCM in cattle. The udder health indicators of N-acetyl-beta-D-glucosaminidase (NAGase) and lactate dehydrogenase (LDH) activity are useful as diagnostic markers in cow, sheep and goat milk; they could be of potential use in camel milk production. The aim of this study was to improve the understanding of SCM in camels, and specifically to assess SCC, and NAGase- and LDH activity in camel milk. In addition, potential associations between SCM (defined by a California Mastitis Test (CMT) score >= 3 and no signs of clinical mastitis) and SCC, NAGase- and LDH activity were investigated.In total, 40 healthy camels without clinical mastitis were sampled in four herds in Kenya. Quarter milk samples were collected aseptically and screened using CMT. SCC was analysed using a direct cell counter (DCC, DeLaval), and NAGase and LDH activity was analysed using kinetic fluorometric measures.In total, 116 milk samples were tested with CMT and analysed for SCC. Of these, 88 were analysed further for NAGase and LDH. The median SCC was 151,000 cells/mL (IQR: 49,500-709,000 cells/mL), and median NAGase and LDH were 18.5 U/l (IQR:14.8-24.0 U/l) and 12.0 U/l (IQR: 8.5-16.2 U/l) respectively. All inflammatory markers (SCC, NAGase, LDH) were significantly associated with SCM (P < 0.001). In conclusion, SCC, NAGase and LDH are potential inflammatory indicators in camel milk that can be used for detection of udder quarters with SCM
Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching
International audienceConcentration quenching is a major impediment to efficient organic light-emitting devices. We herein report on Organic Light-Emitting Diodes (OLEDs) based on a fluorescent amorphous red-emitting starbust triarylamine molecule (4-di(4'-tert-butylbiphenyl-4-yl)amino-4'-dicyanovinylbenzene, named FVIN), exhibiting a very small sensitivity to concentration quenching. OLEDs are fabricated with various doping levels of FVIN into Alq3, and show a remarkably stable external quantum efficiency of 1.5% for doping rates ranging from 5% up to 40%, which strongly relaxes the technological constraints on the doping accuracy. An efficiency of 1% is obtained for a pure undoped active region, along with deep red emission (x=0.6; y=0.35 CIE coordinates). A comparison of FVIN with the archetypal DCM dye is presented in an identical multilayer OLED structure
What is the optimal shape of a pipe?
We consider an incompressible fluid in a three-dimensional pipe, following
the Navier-Stokes system with classical boundary conditions. We are interested
in the following question: is there any optimal shape for the criterion "energy
dissipated by the fluid"? Moreover, is the cylinder the optimal shape? We prove
that there exists an optimal shape in a reasonable class of admissible domains,
but the cylinder is not optimal. For that purpose, we explicit the first order
optimality condition, thanks to adjoint state and we prove that it is
impossible that the adjoint state be a solution of this over-determined system
when the domain is the cylinder. At last, we show some numerical simulations
for that problem
Opacity calculation for target physics using the ABAKO/RAPCAL code
Radiative properties of hot dense plasmas remain a subject of current interest since they play an important role in inertial confinement fusion (ICF) research, as well as in studies on stellar physics. In particular, the understanding of ICF plasmas requires emissivities and opacities for both hydro-simulations and diagnostics. Nevertheless, the accurate calculation of these properties is still an open question and continuous efforts are being made to develop new models and numerical codes that can facilitate the evaluation of such properties. In this work the set of atomic models ABAKO/RAPCAL is presented, as well as a series of results for carbon and aluminum to show its capability for modeling the population kinetics of plasmas in both LTE and NLTE regimes. Also, the spectroscopic diagnostics of a laser-produced aluminum plasma using ABAKO/RAPCAL is discussed. Additionally, as an interesting application of these codes, fitting analytical formulas for Rosseland and Planck mean opacities for carbon plasmas are reported. These formulas are useful as input data in hydrodynamic simulation of targets where the computation task is so hard that in line computation with sophisticated opacity codes is prohibitive
Shape optimization for the generalized Graetz problem
We apply shape optimization tools to the generalized Graetz problem which is a convection-diffusion equation. The problem boils down to the optimization of generalized eigen values on a two phases domain. Shape sensitivity analysis is performed with respect to the evolution of the interface between the fluid and solid phase. In particular physical settings, counterexamples where there is no optimal domains are exhibited. Numerical examples of optimal domains with different physical parameters and constraints are presented. Two different numerical methods (level-set and mesh-morphing) are show-cased and compared
Thermal and Optical Characterization of Undoped and Neodymium-Doped Y3ScAl4O12 Ceramics
Y3–3xNd3xSc1Al4O12 (x = 0, 0.01, and 0.02) ceramics were fabricated by sintering at high temperature under vacuum. Unit cell parameter refinement and chemical analysis have been performed. The morphological characterization shows micrograins with no visible defects. The thermal analysis of these ceramics is presented, by measuring the specific heat in the temperature range from 300 to 500 K. Their values at room temperature are in the range 0.81–0.90 J g1–K–1. The thermal conductivity has been determined by two methods: by the experimental measurement of the thermal diffusivity by the photopyroelectric method, and by spectroscopy, evaluating the thermal load. The thermal conductivities are in the range 9.7–6.5 W K–1 m–1 in the temperature interval from 300 to 500 K. The thermooptic coefficients were measured at 632 nm by the dark mode method using a prism coupler, and the obtained values are in the range 12.8–13.3 × 10–6 K–1. The nonlinear refractive index values at 795 nm have been evaluated to calibrate the nonlinear optical response of these materials.This work is supported by the Spanish Government under projects MAT2011-29255-C02-01-02, MAT2013-47395-C4-4-R, and the Catalan Government under project 2014SGR1358. It was also funded by the European Commission under the Seventh Framework Programme, project Cleanspace, FP7-SPACE-2010-1-GA No. 263044
Integrative genetic map of repetitive DNA in the sole Solea senegalensis genome shows a Rex transposon located in a proto-sex chromosome
Repetitive sequences play an essential role in the structural and functional evolution of the genome, particularly in the sexual chromosomes. The Senegalese sole (Solea senegalensis) is a valuable flatfish in aquaculture albeit few studies have addressed the mapping and characterization of repetitive DNA families. Here we analyzed the Simple Sequence Repeats (SSRs) and Transposable elements (TEs) content from fifty-seven BAC clones (spanning 7.9 Mb) of this species, located in chromosomes by multiple fluorescence in situ hybridization (m-BAC-FISH) technique. The SSR analysis revealed an average density of 675.1 loci per Mb and a high abundance (59.69%) of dinucleotide coverage was observed, being 'AC' the most abundant. An SSR-FISH analysis using eleven probes was also carried out and seven of the 11 probes yielded positive signals. 'AC' probes were present as large clusters in almost all chromosomes, supporting the bioinformatic analysis. Regarding TEs, DNA transposons (Class II) were the most abundant. In Class I, LINE elements were the most abundant and the hAT family was the most represented in Class II. Rex/Babar subfamily, observed in two BAC clones mapping to chromosome pair 1, showed the longest match. This chromosome pair has been recently reported as a putative sexual proto-chromosome in this species, highlighting the possible role of the Rex element in the evolution of this chromosome. In the Rex1 phylogenetic tree, the Senegalese sole Rex1 retrotransposon could be associated with one of the four major ancient lineages in fish genomes, in which it is included O. latipes
- …