
                                                              

University of Dundee

Multiscale modelling and analysis of signalling processes in tissues with non-periodic
distribution of cells
Ptashnyk, Mariya

Published in:
Vietnam Journal of Mathematics

DOI:
10.1007/s10013-016-0232-9

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Ptashnyk, M. (2016). Multiscale modelling and analysis of signalling processes in tissues with non-periodic
distribution of cells. Vietnam Journal of Mathematics, 45(1), 295-316. DOI: 10.1007/s10013-016-0232-9

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/77006008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10013-016-0232-9
http://discovery.dundee.ac.uk/portal/en/research/multiscale-modelling-and-analysis-of-signalling-processes-in-tissues-with-nonperiodic-distribution-of-cells(15e357b6-f96d-40d6-811a-037665cbe5d8).html


Vietnam J. Math.
DOI 10.1007/s10013-016-0232-9

Multiscale Modelling and Analysis of Signalling Processes
in Tissues with Non-Periodic Distribution of Cells

Mariya Ptashnyk1

Received: 7 July 2015 / Accepted: 2 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper, a microscopic model for a signalling process in the left ventricular
wall of the heart, comprising a non-periodic fibrous microstructure, is considered. To derive
the macroscopic equations, the non-periodic microstructure is approximated by the corre-
sponding locally periodic microstructure. Then, applying the methods of locally periodic
homogenization (the locally periodic (l-p) unfolding operator, locally periodic two-scale (l-
t-s) convergence on oscillating surfaces and l-p boundary unfolding operator), we obtain the
macroscopic model for a signalling process in the heart tissue.

Keywords Non-periodic microstructures · Plywood-like microstructures · Signalling
processes · Domains with non-periodic perforations · Locally periodic homogenization ·
Unfolding operator

Mathematics Subject Classification (2010) 35Bxx · 35D30 · 35Kxx

1 Introduction

In this paper, we consider the multiscale analysis of microscopic problems posed in domains
with non-periodic microstructures. We consider a model for a signalling process in the car-
diac muscle tissue of the left ventricular wall, comprising plywood-like microstructure [25,
28]. The plywood-like structure is given by the superposition of planes of parallel aligned
fibres, gradually rotated with a rotation angle γ , see Fig. 1. In the left ventricular wall, the
orientation of the layers of muscle fibres changes from a negative angle at the epicardium
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Fig. 1 Lef t : Schematic representation of a plywood-like structure. Right : Cardiac muscle fiber orientations
vary continuously through the left ventricular wall from a negative angle at the epicardium to positive values
toward the endocardium. Republished from A.D. McCulloch, Cardiac biomechanics, in The Biomedical
Engineering Handbook, 2nd edn., J.D. Bronzino (ed.), CRC Press, Boca Raton, FL, 2000 [25]

to a positive angle at the endocardium. In the microscopic model of a signalling process, we
consider the diffusion of signalling molecules in the extracellular space and their interac-
tion with receptors located on the surfaces of muscle cells. There are two main challenges
in the multiscale analysis of microscopic problems posed in domains with non-periodic per-
forations: (i) the approximation of the non-periodic microstructure by a locally periodic
one and (ii) derivation of limit equations for the non-linear equations defined on oscillating
surfaces of the microstructure. First, assuming the C2-regularity for the rotation angle γ ,
we define the locally periodic microstructure which approximates the original non-periodic
plywood-like structure. Similar approximation of non-periodic plywood-like microstruc-
ture by locally periodic one was considered in [7, 29]. Then, applying techniques of locally
periodic homogenization (locally periodic two-scale convergence (l-t-s) and l-p unfolding
operator), we derive macroscopic equations for the original microscopic model. The l-p
two-scale convergence on oscillating surfaces and l-p boundary unfolding operator allow us
to pass to the limit in the non-linear equations defined on surfaces of the locally periodic
microstructure.

In this paper, we consider a simple model describing the interactions between processes
defined in the perforated domain and on the surfaces of the microstructure. However, the
techniques presented here can be also applied to more general microscopic models as well as
to other non-periodic microstructures, provided the variations in the microscopic structure
are sufficiently regular.

Previous results on homogenization in locally periodic media constitute the multiscale
analysis of a heat-conductivity problem defined in domains with non-periodically dis-
tributed spherical balls [3, 8, 31], and elliptic and Stokes equations in non-periodic fibrous
materials [4, 6, 7, 29]. Formal asymptotic expansion and two-scale convergence defined for
periodic test functions, [27], were used to derive macroscopic equations for models posed
in domains with locally periodic perforations, i.e., domains consisting of periodic cells with
smoothly changing perforations [5, 10, 11, 22, 23, 33].

The paper is organized as follows. In Section 2, the microscopic model for a sig-
nalling process in a tissue with non-periodic plywood-like microstructure is formulated. In
Section 3, we prove the existence and uniqueness results for the microscopic model and
derive a priori estimates for a solution of the microscopic model. The approximation of the
microscopic equations posed in the domain with non-periodic microstructure by the cor-
responding problem defined in a domain with locally periodic microstructure is given in
Section 4. Then, applying the l-p unfolding operator, l-t-s convergence on oscillating sur-
faces, and l-p boundary unfolding operator we derive the macroscopic model for a signalling
process in the heart muscle tissue. In Appendix, we summarize the definitions and main
compactness results for the l-t-s convergence and l-p unfolding operator.
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2 Microscopic Model for a Signalling Process in Heart Tissue

In this work, we consider a receptor-based microscopic model for a cellular signalling pro-
cess in cardiac tissue. A signalling system is important for proper function of cells and
appropriate respond to changes in the extracellular environment. Many regulatory events in
cardiac tissue are mediated via surface receptors, located in cardiac cells membrane, that
transmit signals through the activation of GTP binding proteins (G proteins) [34]. Cardiac
cells (myocytes) in the heart wall tissue are joined in a linear arrangement to form mus-
cle fibres. In the left ventricular wall of the heart the orientation of layers of muscle fibre
changes with position through the wall. The layers of parallel aligned muscle fibres are
rotated from −60◦ at epicardium to +70◦ at endocardium [25] and create a non-periodic
plywood-like microstructure. For simplicity, we assume that the individual muscle fibres
are not connected to each other. However, it is possible to consider a periodic distribution
of connections between the fibres.

In the mathematical model for a signalling process in cardiac tissue, we consider the
binding of signalling molecules to receptors located on the cell membrane, which through
the activation of G proteins (not considered in our simple model) results in the activation of
a cell signalling pathway. We consider the diffusion, production and decay of ligands (sig-
nalling molecules) c and binding of ligands to the membrane receptors. We shall distinguish
between free receptors rf and bound receptors rb, which correspond to receptor-ligand
complexes. We assume that the receptor-ligand complex can dissociate and result in a free
receptor and ligand. We also consider the production of new free receptors and natural decay
of free and bound receptors.

∂t c − ∇ · (A(x)∇c) = F(x, c) in the extracellular space,
A(x)∇c · n = −α(x)c rf + β(x)rb on the cell membrane,
∂t rf = p(x, rb) − α(x)c rf + β(x)rb − df (x)rf on the cell membrane,
∂t rb = α(x)c rf − β(x)rb − db(x)rb on the cell membrane,

where df and db are the decay rates, β denotes the dissociation rate for the receptor-ligand
complex, α is the binding rate, the function p models the production of free receptors, and
the function F describes the production and decay of ligands.

To define the plywood-like microstructure of the cardiac muscle tissue of the left ven-
tricular wall, we consider a function γ ∈ C2(R), with −π/2 ≤ γ (x) ≤ π/2 for x ∈ R and
define the rotation matrix around the x3-axis as

R(γ (x)) =
⎛
⎝

cos(γ (x)) − sin(γ (x)) 0
sin(γ (x)) cos(γ (x)) 0

0 0 1

⎞
⎠ ,

where γ (x) denotes the rotation angle with the x1-axis. Denote Rx := R(γ (x3)).
We consider an open, bounded subdomain � ⊂ R

3, with Lipschitz boundary, represent-
ing a part of the cardiac muscle tissue and the x3-axis to be orthogonal to the layers of
parallel-aligned muscle fibres. We assume that the radius of the muscle fibres depends on
the position in the tissue and define the characteristic function of a fibre by

ϑ(x, y) =
{

1, |ŷ| ≤ ρ(x̂R)a,

0, |ŷ| > ρ(x̂R)a,

where ŷ = (y2, y3) and x̂R = ((R−1
x x)2, (R

−1
x x)3), ρ ∈ C1(R2), with 0 < ρ0 ≤ ρ(x̂R) ≤

ρ1 < ∞ and ρ(x̂R)a ≤ 2/5 for all x ∈ �, i.e., a = 2/(5ρ1).
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By small parameter ε we denote the characteristic size of the microstructure of cardiac
tissue, given as a ratio between the characteristic diameter of muscle fibres and characteristic
size of the cardiac tissue. Notice that for plywood-like microstructure the axis of each fibre
can be defined by a rotated around the x3-axis line, parallel to the x1-axis and passing
through a point of an ε-grid in the plane x1 = const. Thus, for j ∈ Z

3, we define xε
j = Rxε

j
εj

with Rxε
j

:= R(γ (xε
j,3)). Notice that xε

j,3 = εj3 and the third variable is invariant under the
rotation Rxε

j
. This ensures that for each fixed εj3 we obtain a layer of parallel aligned fibres.

Then the perforated domain �∗
ε , corresponding to the extracellular space of cardiac

tissue, is defined as

�∗
ε = � \ �0

ε, with �0
ε =

⋃
j∈�ε

(εRxε
j
Kxε

j
Y0 + xε

j ) =
⋃

j∈�ε

εRxε
j
(Kxε

j
Y0 + j),

where �ε = {j ∈ Z
3 : εRxε

j
(Y 1 + j) ⊂ �}, Y0 = {y ∈ Y 1 : |ŷ| ≤ a}, with a = 2/(5ρ1)

and ρ1 = sup� ρ(x), and

Y1 =
(

−1

2
,

1

2

)3

, Kx = K(x), K(x) =
⎛
⎝

1 0 0
0 ρ(x̂R) 0
0 0 ρ(x̂R)

⎞
⎠ .

We aslo define Yxε
j

= Rxε
j
Y1, and Y ∗

xε
j ,K

= Rxε
j
(Y1 \ Kxε

j
Y0) for j ∈ �ε .

We denote �0,1 = {y ∈ R
3 : y1 = ±1/2}. Then, assumptions on ρ and a ensure that

Kx(Y0 \ �0,1) ⊂ Y1 for all x ∈ � and, since R is a rotation matrix, (εRxε
n
Kxε

n
Y0 + xε

n) ∩
(εRxε

m
Kxε

m
Y0 + xε

m) = ∅ for any m, n ∈ �ε with n2 �= m2 or n3 �= m3. Hence, �∗
ε is

connected. This corresponds to our assumption that muscle fibres do not touch each other
and are not directly connected, and the interactions between the muscle fibres are facilitated
through the extracellular matrix.

Now, using the definition of ϑ , the characteristic function of muscle fibres in cardiac
tissue reads

χ�ε
f
(x) = χ�(x)

∑
j∈�ε

ϑ

(
xε
j , R−1

xε
j

(x − xε
j )/ε

)

and the extracellular space is characterised by

χ�∗
ε

= (1 − χ�ε
f
)χ�.

The surfaces of muscle cells, i.e., the boundaries of the microstructure, are denoted by

�ε =
∑
j∈�ε

(
εRxε

j
Kxε

j
� + xε

j

)
=
∑
j∈�ε

εRxε
j
(Kxε

j
� + j),

where � = ∂Y0 \ �0,1.
Notice that the changes in the microstructure of �∗

ε are defined by changes in the period-
icity given by the linear transformation (rotation) R(x) and by changes in the shape of the
microstructure (changes in the radius of muscle fibres) given by the linear transformation
K(x) for x ∈ �.
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To determine the non-constant reaction rates for binding and dissociation processes on
cell membranes, we consider α, β ∈ C1(�; C1

0 (Y1)), extended in y-variable by zero to R
3,

and define

αε(x) =
∑
j∈�ε

α(x, R−1
xε
j

(x − xε
j )/ε)χ(εYxε

j
+xε

j )(x),

βε(x) =
∑
j∈�ε

β(x, R−1
xε
j

(x − xε
j )/ε)χ(εYxε

j
+xε

j )(x).

Then, the microscopic model for a signalling process in cardiac tissue reads

∂t c
ε − div(A∇cε) = F(cε) in (0, T ) × �∗

ε ,

−A∇cε · n = ε
[
αε(x) cε rε

f − βε(x) rε
b

]
on (0, T ) × �ε,

A∇cε · n = 0 on (0, T ) × (∂�∗
ε \ �ε),

cε(0, x) = c0(x) in �∗
ε ,

(1)

where the dynamics in the concentrations of free and bound receptors on cell surfaces is
determined by two ordinary differential equations

∂t r
ε
f = p(rε

b ) − αε(x)cεrε
f + βε(x)rε

b − df rε
f on (0, T ) × �ε,

∂t r
ε
b = αε(x)cεrε

f − βε(x)rε
b − dbr

ε
b on (0, T ) × �ε,

rε
f (0, x) = rε

f 0(x), rε
b (0, x) = rε

b0(x) on �ε,

(2)

with initial conditions defined as

rε
l0(x) = r1

l0(x)
∑
j∈�ε

r2
l0(R

−1
xε
j

(x − xε
j )/ε)χ(εYxε

j
+xε

j )(x) for l = f, b.

For simplicity of the presentation we shall assume that the diffusion coefficient A and the
decay rates df , db are constant. We also assume that the functions F and p are independent
of x ∈ �. The dependence of A, df , db, F and p on the microscopic and macroscopic
variables can be analyzed in the similar way as for αε and βε .

Assumption 1

– A is symmetric and (Aξ, ξ) ≥ a0|ξ |2 for ξ ∈ R
3, a0 > 0.

– γ ∈ C2(R), K ∈ C1(�) with 0 < ρ2
0 ≤ | det K(x)| ≤ ρ2

1 < ∞ and K(x)(Y0 \ �0,1) ⊂
Y1 for all x ∈ �, and dl ≥ 0 for l = f, b.

– F : R → R is Lipschitz continuous, F(ξ−)ξ− ≤ μF |ξ−|2, with μF > 0 and ξ− =
min{0, ξ}.

– p : R → R is Lipschitz continuous and p(ξ) ≥ 0 for ξ ≥ 0.
– α, β ∈ C1(�; C1

0 (Y1)) are nonnegative.
– c0 ∈ H 1(�)∩L∞(�), r1

l0 ∈ C1(�), and r2
l0 ∈ C1

0 (Y1), extended by zero to R
3, and c0,

r
j

l0 are nonnegative for l = f, b and j = 1, 2.

Notice that the C1-regularity of α and β is required for the approximation of the integrals
defined on the boundaries of the non-periodic microstructure by the integrals defined on the
boundaries of the corresponding locally periodic microstructure.

We shall use the following notations �∗
ε,T = (0, T ) × �∗

ε �ε
T = (0, T ) × �ε , �T =

(0, T ) × �, �T = (0, T ) × �, and �x,T = (0, T ) × �x .
For u ∈ Lq(0, τ ;Lp(G)) and v ∈ Lq ′

(0, τ ; Lp′
(G)), with 1/p + 1/p′ = 1 and 1/q +

1/q ′ = 1, τ > 0 and G ⊂ R
d for d = 2 or 3, we denote 〈u, v〉Gτ = ∫ τ

0

∫
G

uvdxdt .
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We shall consider a weak solution of the problem (1) and (2), defined in the follow-
ing way.

Definition 1 A weak solution of the microscopic problem (1) and (2) are functions cε, rε
f ,

rε
b such that

cε ∈ L2(0, T ; H 1(�∗
ε)) ∩ H 1(0, T ; L2(�∗

ε)),

rε
l ∈ H 1(0, T ; L2(�ε)), rε

l ∈ L∞(0, T ; L∞(�ε)), l = f, b,

satisfying (1) in the weak form

〈∂t c
ε, φ〉�∗

ε,T
+ 〈A∇cε,∇φ〉�∗

ε,T
= 〈F(cε), φ〉�∗

ε,T
+ ε〈βεrε

b − αεcεrε
f , φ〉�ε

T
(3)

for all φ ∈ L2(0, T ; H 1(�∗
ε)), (2) are satisfied a.e. on �ε

T , and cε → c0 in L2(�∗
ε), r

ε
l → rε

l0
in L2(�ε) for l = f, b, as t → 0.

3 Existence, Uniqueness, and a Priori Estimates for a Weak Solution
of the Microscopic Problem (1) and (2)

In a similar way as in [9, 21, 30], we can prove the existence, uniqueness, and a priori
estimates for a weak solution of problem (1)–(2). Notice that for the derivation of a priori
estimates a trace estimate, uniform in ε, for functions φ ∈ W 1,p(�∗

ε) is required. The
fact that Kx(Y0 \ �0,1) ⊂ Y1 for all x ∈ � and the uniform boundedness of det K , i.e.,
0 < ρ2

0 ≤ | det K(x)| ≤ ρ2
1 < ∞, ensure the trace estimate for φ ∈ H 1(Y1 \ Kxε

j
Y0), i.e.,

‖φ‖p

Lp(Kxε
j
�) ≤ C

[
‖φ‖p

Lp(Y1\Kxε
j
Y0)

+ ‖∇yφ‖p

Lp(Y1\Kxε
j
Y0)

]
,

where the constant C depends on Y1, Y0, K and is independent of ε and j ∈ �ε . Then,
considering the change of variables x = εRxε

j
y + xε

j = εRxε
j
(y + j) and summing up over

j ∈ �ε , we obtain for φ ∈ W 1,p(�∗
ε), with p ∈ [1, ∞), that

ε‖φ‖p

Lp(�ε) ≤ μ̃
[
‖φ‖p

Lp(�∗
ε )

+ εp‖∇φ‖p

Lp(�∗
ε )

]
, (4)

where the constant μ̃ depends on Y1, Y0, R and K and is independent of ε.

Lemma 1 Under Assumption 1 there exists a unique non-negative weak solution of the
microscopic problem (1) and (2) satisfying the following a priori estimates

‖cε‖L∞(0,T ;L2(�∗
ε ))

+ ‖∇cε‖L2(�∗
ε,T ) + ‖∂t c

ε‖L2(�∗
ε,T ) + ε

1
2 ‖cε‖L2(�ε

T ) ≤ μ, (5a)

‖rε
f ‖L∞(�ε

T ) + ‖rε
b‖L∞(�ε

T ) + ε
1
2 ‖∂t r

ε
f ‖L2(�ε

T ) + ε
1
2 ‖∂t r

ε
b‖L2(�ε

T ) ≤ μ, (5b)

and
‖(cε − M1e

M2t )+‖L∞(0,T ;L2(�∗
ε ))

+ ‖∇(cε − M1e
M2t )+‖L2(�∗

ε,T ) ≤ μ ε, (6)

where the constant μ is independent of ε, M1 ≥ ‖c0‖L∞(�), and M1M2 ≥ |F(0)| +
‖F ′‖L∞M1 + μ̃‖β‖L∞(�×Y1)‖rε

b‖L∞(�ε
T ), with μ̃ being the constant in the trace inequal-

ity (4).

Proof (Sketch) As in [30] the existence of a solution of the microscopic problem (1) and (2)
for each fixed ε > 0 is obtained by applying fixed point arguments and Galerkin method.
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Also, using the same arguments as in [30] we obtain that cε(t, x) ≥ 0 for (t, x) ∈ �∗
ε,T and

rε
l (t, x) ≥ 0 for (t, x) ∈ �ε

T , with l = f, b. To derive a priori estimates, we consider the
structure of the microscopic equations. For non-negative solutions, by adding the equations
for rε

f and rε
b , we obtain

∂t (r
ε
f + rε

b ) = p(rε
b ) − dbr

ε
b − df rε

f .

Then the Lipschitz continuity of p and the non-negativity of rε
f and rε

b imply the
boundedness of rε

f and rε
b on �ε

T .
Considering cε as a test function in (3) and using the trace inequality (4), we obtain the

estimates for cε . Testing (2) by ∂t r
ε
f and ∂t r

ε
b , respectively, yields the estimates for the time

derivatives of rε
f and rε

b . In the derivation of the a priori estimate for ∂t c
ε we use the equation

for ∂t r
ε
f to estimate the non-linear term on the boundary �ε , i.e.,

−
∫

�ε

αε(x)rε
f cε∂t c

εdσx = −1

2

d

dt

∫
�ε

αε(x)rε
f |cε|2dσx

+1

2

∫
�ε

αε(x)(p(rε
b ) − αε(x)rε

f cε + βε(x)rε
b − df rε

f )|cε|2dσx

≤ 1

2

∫
�ε

(
αε(x)p(rε

b ) + βε(x)rε
b

) |cε|2dσx − 1

2

d

dt

∫
�ε

αε(x)rε
f |cε|2dσx.

Considering (cε − M1e
M2t )+ as a test function in (3), where M1 and M2 are as in the

formulation of the lemma, we obtain

∫
�∗

ε

|(cε(τ ) − M1e
M2τ )+|2dx +

∫ τ

0

∫
�∗

ε

M1M2e
M2t (cε − M1e

M2t )+dxdt

+
∫ τ

0

[∫
�∗

ε

|∇(cε − M1e
M2t )+|2dx + ε

∫
�ε

αε(x)rε
f cε(cε − M1e

M2t )+dσx

]
dt

≤ C1

∫ τ

0

[∫
�∗

ε

F (cε)(cε − M1e
M2t )+dx + ε

∫
�ε

βε(x)rε
b (cε − M1e

M2t )+dσx

]
dt

for τ ∈ (0, T ]. Using the non-negativity and boundedness of βε and rε
f , along with the trace

inequality (4), the last integral can be estimated as

ε

∫ τ

0

∫
�ε

βεrε
b (cε − M1e

M2t )+dσxdt

≤ μ1

∫ τ

0

∫
�∗

ε

(cε − M1e
M2t )+dxdt + εμ1

∫ τ

0

∫
�∗

ε

|∇(cε − M1e
M2t )+|dxdt

≤ μ1

∫ τ

0

∫
�∗

ε

(cε − M1e
M2t )+dxdt + μ2δ

∫ τ

0

∫
�∗

ε

|∇(cε − M1e
M2t )+|2dxdt + μδε

2

for any δ > 0, where the constants μ1, μ2 and μδ depend on ‖β‖L∞(�×Y1), ‖rε
b‖L∞(�ε

T )

and on the transformation matrices R and K , but are independent of ε. More specifically,
μ1 = μ̃‖β‖L∞(�×Y1)‖rε

b‖L∞(�ε
T ). Using the non-negativity of cε and rε

f , the Lipschitz con-
tinuity of F , and the assumptions on M1 and M2, and applying the Gronwall inequality
yield estimate (6).
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To show the uniqueness of a solution of the microscopic problem (1) and (2), we consider
the equations for the difference of two solutions (cε

1, r
ε
f,1, r

ε
b,1) and (cε

2, r
ε
f,2, r

ε
b,2). The non-

negativity of αε , rε
f,j , and cε

j , along with the boundedness of rε
f,j , ensures

‖rε
f,1(τ ) − rε

f,2(τ )‖2
L2(�ε)

≤ μ

∫ τ

0

⎡
⎣∑

l=f,b

‖rε
l,1 − rε

l,2‖2
L2(�ε)

+ ‖cε
1 − cε

2‖2
L2(�ε)

⎤
⎦ dt.

Testing the sum of the equations for rε
f,1 − rε

f,2 and rε
b,1 − rε

b,2 by rε
f,1 + rε

b,1 − rε
f,2 − rε

b,2
and using the estimate from above yield

‖rε
b,1(τ ) − rε

b,2(τ )‖2
L2(�ε)

≤ ‖rε
b,1(τ ) + rε

f,1(τ ) − rε
b,2(τ ) − rε

f,2(τ )‖2
L2(�ε)

+‖rε
f,1(τ ) − rε

f,2(τ )‖2
L2(�ε)

≤ μ1

∫ τ

0

∑
l=f,b

‖rε
l,1− rε

l,2‖2
L2(�ε)

dt+μ2

∫ τ

0
‖cε

1 − cε
2‖2

L2(�ε)
dt.

Combining the last two inequalities and applying the Gronwall inequality imply the esti-
mates for ‖rε

l,1(τ ) − rε
l,2(τ )‖2

L2(�ε)
, with l = f, b, in terms of ‖cε

1 − cε
2‖2

L2((0,τ )×�ε)
for

τ ∈ (0, T ].
Considering (cε − S)+, with some S > 0, as a test function in (3) and using the

boundedness of rε
f and rε

b we obtain

‖(cε − S)+‖L∞(0,T ;L2(�∗
ε ))

+ ‖∇(cε − S)+‖L2(�∗
ε,T ) ≤ μ1S

(∫ T

0
|�∗,S

ε (t)|dt

) 1
2

,

where S ≥ max{‖c0‖L∞(�), ‖β‖L∞(�×Y1)‖rε
b‖L∞(�ε

T ), |F(0)|}, μ1 is some positive con-

stant, and �∗,S
ε (t) = {x ∈ �∗

ε : cε(t, x) > S}. Then, Theorem II.6.1 in [20] yields the
boundedness of cε in (0, T ) × �∗

ε for every fixed ε.
Considering now (3) for two solutions (cε

1, r
ε
f,1, r

ε
b,1) and (cε

2, r
ε
f,2, r

ε
b,2), we obtain the

estimates for ‖cε
1−cε

2‖2
L2(�∗

ε,τ )
and ε‖cε

1−cε
2‖2

L2((0,τ )×�ε)
in terms of ε‖rε

l,1−rε
l,2‖2

L2((0,τ )×�ε)
,

with l = f, b and τ ∈ (0, T ]. Using the estimates for ‖rε
l,1(τ ) − rε

l,2(τ )‖2
L2(�ε)

in terms of

‖cε
1 −cε

2‖2
L2((0,τ )×�ε)

, shown above, and applying the Gronwall inequality, we conclude that

rε
l,1 = rε

l,2 on (0, T ) × �ε , with l = f, b, and cε
1 = cε

2 in (0, T ) × �∗
ε .

The assumptions on the non-periodic microstructure of �∗
ε and the regularity of the

transformation matrices R and K ensure the following extension result.

Lemma 2 For xε
j ∈ �, and u ∈ W 1,p(Y ∗

xε
j ,K

), with p ∈ (1,+∞) and j ∈ �ε , there exists

an extension ũ ∈ W 1,p(Yxε
j
) from Y ∗

xε
j ,K

into Yxε
j
such that

‖ũ‖Lp(Yxε
j
) ≤ μ‖u‖Lp(Y ∗

xε
j
,K

), ‖∇ũ‖Lp(Yxε
j
) ≤ μ‖∇u‖Lp(Y ∗

xε
j
,K

), (7)

where μ depends on Y1, Y0, R and K and is independent of ε and j ∈ �ε .
For u ∈ W 1,p(�∗

ε) we have an extension ũ ∈ W 1,p(�) from �∗
ε into � such that

‖ũ‖Lp(�) ≤ μ‖u‖Lp(�∗
ε )

, ‖∇ũ‖Lp(�) ≤ μ‖∇u‖Lp(�∗
ε )

, (8)

where μ depends on Y1, Y0, R and K and is independent of ε.
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Proof (Sketch) The proof follows the same lines as in the periodic case, see e.g. [15, 19].
The only difference here is that the extension depends on the Lipschitz continuity of K and
R and the uniform boundedness from above and below of | det K(x)| and | det R(x)| for all
x ∈ �.

To show (8), we first consider the extension from Rxε
j
((Y1 \Kxε

j
Y0)+j) into Rxε

j
(Y1 +j)

and obtain the estimates in (7). Notice that due to the definition of K(x), the fibre radius
varies between different fibres in the plywood-like structure of the heart tissue, but is con-
stant along each individual fibre. Thus, apart from the end parts of the fibres near ∂�, we
have to extend u only in the directions orthogonal to the fibres. In the definition of �∗

ε we
consider those j that εRxε

j
(Y 1 + j) ⊂ �. Hence the extension for the end parts of the fibres

near ∂�, i.e., for such Rxε
j
((Y1 \Kxε

j
Y0)+j) that

⋃
m∈{0,1}3 εRxε

j
(Y 1 +j ±m)∩∂� �= ∅, is

also well-defined. Since det R(x) = 1, and 0 < ρ2
0 ≤ | det K(x)| ≤ ρ2

1 < ∞ for all x ∈ �,
we obtain that the constant μ in (7) is independent of xε

j , ε, and j ∈ �ε . Then scaling
Rxε

j
((Y1 \Kxε

j
Y0)+ j) and Rxε

j
(Y1 + j) by ε and summing up over j ∈ �ε in (7) imply (8).

In the case when the boundary ∂� crosses the fibres in a non-orthogonal way, we would
obtain only a local extension to a subdomain �δ = {x ∈ � : dist(x, ∂�) > δ} for any fixed
δ > 0.

4 Derivation of Macroscopic Equations

To derive macroscopic equations for the microscopic problem posed in a domain with the
non-periodic plywood-like microstructure, we approximate it by a problem defined in the
domain with the corresponding locally periodic microstructure and apply the methods of
locally periodic two-scale convergence (l-t-s) and l-p unfolding operator (see Appendix for
the definitions and convergence results for l-t-s convergence and l-p unfolding operator).
Notice that the regularity assumptions on the orientation angle γ are essential for the con-
struction of an appropriate locally periodic microstructure for the non-periodic plywood-like
structure.

To define the locally periodic microstructure related to the original non-periodic one,
we consider, similarly to [8, 29], the partition covering of � by a family of open non-
intersecting cubes {�ε

n}1≤n≤Nε of side εr , with 0 < r < 1, such that

� ⊂
Nε⋃
n=1

�
ε

n and �ε
n ∩ � �= ∅.

For each x ∈ R
3, we consider a transformation matrix D(x) ∈ R

3×3 and assume that
D, D−1 ∈ Lip(R3;R3×3) and 0 < d0 ≤ | det D(x)| ≤ d1 < ∞ for all x ∈ �. The matrix
D will be defined by the rotation matrix R and its derivatives and the specific form of D

will be given later.
Then, the locally periodic microstructure is defined by considering a covering of �ε

n by
parallelepipeds εDxε

n
Y such that

�ε
n ⊂ x̃ε

n +
⋃

ξ∈�ε
n

εDxε
n
(Y + ξ), where �ε

n = {ξ ∈ Z
3 : εDxε

n
(Y + ξ) ∩ �ε

n �= ∅},
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and points xε
n, x̃

ε
n ∈ �ε

n, for n = 1, . . . , Nε , are arbitrary chosen, but fixed. Here Y =
(0, 1)3, Dx := D(x), and Dxε

n
= D(xε

n) for 1 ≤ n ≤ Nε . Then, the perforated domain with
locally periodic microstructure is given by

�̃∗
ε = Int

(
Nε⋃
n=1

�∗,ε
n

)
∩ �, with �∗,ε

n =
⎛
⎝x̃ε

n +
⋃

ξ∈�ε
n

εDxε
n
(Y

∗
Kxε

n
+ ξ)

⎞
⎠ ∩ �

ε

n,

where Y ∗
Kxε

n

= Y \⋃j∈{0,1}3(K̃xε
n
Y0 + j), with K̃xε

n
= K̃(xε

n) for n = 1, . . . , Nε , and the

transformation matrix K̃ will be specified later. We shall also denote

�̂ε
n = x̃ε

n + Int

⎛
⎜⎝
⋃

ξ∈�̂ε
n

εDxε
n
(Y + ξ)

⎞
⎟⎠ and �∗

ε = �̃∗
ε \

Nε⋃
n=1

�̂ε
n,

where �̂ε
n = {ξ ∈ �ε

n : εDxε
n
(Y + ξ) ⊂ (�ε

n ∩ �)}. The boundaries of the locally periodic
microstructure are defined as

�̃ε =
Nε⋃
n=1

�ε
n ∩ �, where �ε

n =
⎛
⎝x̃ε

n +
⋃

ξ∈�ε
n

εDxε
n
(�̃xε

n,K + ξ)

⎞
⎠ ∩ �ε

n,

and

�̂ε =
Nε⋃
n=1

⎛
⎜⎝x̃ε

n +
⋃

ξ∈�̂ε
n

εDxε
n
(�̃xε

n,K + ξ)

⎞
⎟⎠ ,

where �̃xε
n,K = K̃xε

n
� and � = ∂Y0 \ �0,1. For the problem analyzed here, we shall consider

x̃ε
n = xε

n.
The following calculations illustrate the motivation for the locally periodic approxima-

tion and determine formulas for the transformation matrices D and K̃ . For n = 1, . . . , Nε ,
we choose such κn ∈ Z

3 that for xε
n = Rxε

n
εκn we have xε

n ∈ �ε
n. In the definition of

covering of �ε
n by shifted parallelepipeds, we consider a numbering of ξ ∈ �ε

n and write

�ε
n ⊂ xε

n +
I ε
n⋃

j=1

εDxε
n
(Y + ξj ) for ξj ∈ �ε

n.

Then for 1 ≤ j ≤ I ε
n we consider kn

j = κn + ξj and xε
kn
j

= Rkn
j
εkn

j . Here Rkn
j

:= Rxε
kn
j

and

Rκn := Rxε
n
.

Using the regularity assumptions on the function γ and considering the Taylor expansion
of R−1 around xε

n, i.e. around εκn,3, we obtain

R−1
kn
j

(x − xε
kn
j
) = R−1

kn
j

x − εkn
j

= R−1
κn

x + (R−1
κn

)′xε
nξj,3ε + (R−1

κn
)′(x − xε

n)ξj,3ε + b(|ξj,3ε|2)x − ε(κn + ξj )

= R−1
κn

(x − xε
n) − W̃xε

n
ξj ε + (R−1

κn
)′(x − xε

n)ξj,3ε + b(|ξj,3ε|2)x, (9)

where W̃xε
n

= W̃ (xε
n) with W̃ (x) = (I − ∇R−1(γ (x3))x). The notation of the gradient is

understood as ∇R−1(γ (x))x = ∇z(R
−1(γ (z))x)|z=x . Thus, for x, xε

n ∈ �ε
n, since |x −

xε
n| ≤ Cεr , the distance between R−1

xε
n

(x − xε
n) − W̃xε

n
ξj ε and R−1

kn
j

(x − xε
kn
j
) is of the order

sup1≤j≤I ε
n
|ξj ε|2 ∼ ε2r .
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This calculation together with the estimates below will ensure that the non-periodic
plywood-like structure can be approximated by the corresponding locally periodic
microstructure, comprising Ỹxε

n
-periodic structure in each �ε

n for n = 1, . . . , Nε , and
|�ε

n| ∼ ε3r for an appropriate r ∈ (0, 1). Here Ỹx = D(x)Y , with D(x) = RxW(x), and

W(x) =
⎛
⎝

1 0 0
0 1 w(x)

0 0 1

⎞
⎠ , (10)

where w(x) = γ ′(x3)(cos(γ (x3))x1 + sin(γ (x3))x2) and Rx = R(γ (x3)). The transforma-
tion matrix K̃ is defined as K̃(x) = W−1(x)K(x) and the boundary of the muscle fibres in
the locally periodic approximation is given by �̃x = D(x)K̃(x)� = RxK(x)�.

The definitions of R, W and γ ensure that the transformation matrices D and K̃ are Lip-
schitz continuous, as well as 0 < d0 ≤ | det D(x)| ≤ d1 < ∞ and 0 < ρ2

0 ≤ | det K̃(x)| ≤
ρ2

1 < ∞ for all x ∈ �. Since ϑ is independent of the first variable, we consider in the defini-
tion of W(x) the shift only in the second variable. Notice that if the original microstructure
would be locally periodic, i.e. R(γ (x3)) = R(γ (xε

n,3)) for x ∈ �ε
n and some xε

n ∈ �ε
n, then

the matrix W would be constant in each �ε
n and we would obtain D(x) = R(γ (x3)) for

x ∈ �.
In the approximation of the problem posed in the domain with the non-periodic plywood-

like structure, we shall use the following lemma, proven in [6], that facilitate the estimate
for the difference between the values of the characteristic function at two different points.

Lemma 3 ([6]) Let χb be the characteristic function of the fibre of radius b, i.e., χb(x) = 1
for |x̂| ≤ b and χb(x) = 0 for |x̂| > b, with x̂ = (x2, x3). Then

‖χb(x + δ) − χb(x)‖2
L2(�)

≤ CbL|δ| for all b > 0 and |δ| ≤ b,

where L is the length of the fibre and the constant C is independent of b, δ, and L.

Deriving estimates for the difference of solutions of the original microscopic prob-
lem and the corresponding locally periodic approximation and applying techniques of
locally periodic homogenization, we obtain the following macroscopic equations for the
microscopic problem (1) and (2).

Theorem 1 A sequence of solutions of the microscopic problem (1) and (2) converges to a
solution

c ∈ L2(0, T ; H 1(�)) ∩ H 1(0, T ;L2(�)) and rl ∈ H 1(0, T ; L2(�; L2(�̃x))),

where l = f, b, of the macroscopic equations

θ(x)∂t c − div(A(x)∇c) = θ(x)F (c) + 1

|Ỹx |
∫

�̃x

[
β̃(x, y)rb − α̃(x, y)rf c

]
dσy,

A(x)∇c · n = 0 on ∂� × (0, T ),

∂t rf = p(rb) − α̃(x, y)rf c + β̃(x, y)rb − df rf , (11)

∂t rb = α̃(x, y)rf c − β̃(x, y)rb − db rb,

for (t, x) ∈ (0, T ) × � and y ∈ �̃x , where the macroscopic diffusion coefficient A is
defined as

Aij (x) = 1

|Ỹx |
∫

Ỹ ∗
x,K

(Aij + Aik∂yk
wj (x, y))dy,
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with wj , for j = 1, 2, 3, which are solutions of the unit cell problems

div(A(∇yw
j + ej )) = 0 in Ỹ ∗

x,K,

A(∇yw
j + ej ) · n = 0 on �̃x, wj Ỹx − periodic,

∫
Ỹ ∗

x wj dy= 0 .
(12)

Here

Ỹ ∗
x,K = Dx

⎛
⎝Y \

⋃

m∈{0,1}3

(K̃xY0 + m)

⎞
⎠ , Ỹx = DxY,

�̃x =
⋃

m∈{0,1}3

Dx(K̃x� + m) ∩ Ỹx, θ(x) = |Ỹ ∗
x,K |

|Ỹx |
,

where Y = (0, 1)3, Rx = R(γ (x3)), Dx = RxWx , K̃x = W−1
x Kx , with Wx = W(x)

defined by (10), and

α̃(x, y) =
∑

m∈Z3

α(x,R−1
x (y − Dxm)),

β̃(x, y) =
∑

m∈Z3

β(x, R−1
x (y − Dxm)). (13)

Proof Using calculations from above, we consider a domain with a locally periodic
microstructure characterised by the periodicity cell Ỹxε

n
= Dxε

n
Y in each �ε

n, with n =
1, . . . , Nε and the shift xε

n ∈ �ε
n in the covering of �ε

n by Dxε
n
(Y + ξ), with ξ ∈ �ε

n.
Then, the characteristic function of the extracellular space �̃∗

ε in a tissue with locally
periodic microstructure is defined by χ�̃∗

ε
= (1 − χ�̃ε

f
)χ�, where χ�̃ε

f
denotes the

characteristic function of fibres

χ�̃ε
f

=
Nε∑
n=1

χ�̃ε
n,f

and χ�̃ε
n,f

=
∑
ξ∈�ε

n

ϑ(xε
n, R

−1
xε
n

(x − xε
n − εDxε

n
ξ)/ε)χ�ε

n
.

The boundaries of the locally periodic microstructure are denoted by

�̃ε =
Nε⋃
n=1

⋃
ξ∈�ε

n

(xε
n + εRxε

n
Kxε

n
� + εDxε

n
ξ) ∩ �.

Notice that non-periodic changes in the shape of the perforations (radius of muscle
fibres) are approximated by the same transformation matrix K(x). This is consistent with
the results obtained in [10, 11, 23, 33]. However spatial changes in the periodicity are
approximated by Dx = RxWx .

The reaction rates (binding and dissociation rates) are defined in terms of locally periodic
microstructure in the following way

α̃ε(x) =
Nε∑
n=1

∑
ξ∈�ε

n

α(x, (R−1
xε
n

(x − xε
n) − Wxε

n
εξ)/ε)χ�ε

n
,

β̃ε(x) =
Nε∑
n=1

∑
ξ∈�ε

n

β(x, (R−1
xε
n

(x − xε
n) − Wxε

n
εξ)/ε)χ�ε

n
.

To show that we can approximate the problem (1) and (2) by a microscopic problem
defined in the domain with the locally periodic microstructure, we have to prove that the
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difference between the characteristic function of the original domain χ�∗
ε

and of the locally
periodic perforated domain χ�̃∗

ε
converges to zero strongly in L2(�) as ε → 0. Also,

we have to show that the difference between boundary integrals and their locally periodic
approximations converges to zero as ε → 0. This will ensure that as ε → 0 the sequence
of solutions of the original microscopic problem (1)–(2) will converge to a solution of the
macroscopic equations obtained by homogenization of the corresponding problem defined
in the domain with locally periodic microstructure.

For the difference between χ�∗
ε

and χ�̃∗
ε
, we have

∫
�

|χ�∗
ε
− χ�̃∗

ε
|2dx ≤ I1 + I2

=
Nε∑
n=1

∫
�ε

n

∑
j∈J ε

n

∣∣∣∣ϑ(xε
kj

, R−1
xε
kj

(x − xε
kj

)/ε) − ϑ(xε
n, R

−1
xε
kj

(x − xε
kj

)/ε)

∣∣∣∣
2

dx

+
Nε∑
n=1

∫
�ε

n

∑
j∈J ε

n

∣∣∣∣ϑ(xε
n, R

−1
xε
kj

(x − xε
kj

)/ε) − ϑ(xε
n, (R

−1
xε
n

(x − xε
n) − εWxε

n
j)/ε)

∣∣∣∣
2

dx,

where xε
n = Rxε

n
εκn, xε

kj
= Rxε

kj
εkj , with kj = κn + j , and

J ε
n =

{
j ∈ Z

3 :
[(

xε
kj

+ εRxε
kj

Y1

)
∪ (xε

n + εRxε
n
Y1 + εDxε

n
j
)] ∩ �ε

n �= ∅
}

.

We notice that ε3|J ε
n | ≤ Cε3r and |Nε| ≤ Cε−3r . For the first integral, we have

I1 ≤
Nε∑
n=1

ε3|J ε
n |‖∇ρ‖L∞(�) sup

j∈J ε
n

|xε
n − xε

kj
| ≤ Cεr .

To estimate the second integral, we use Lemma 3. Since in each �ε
n the length of fibres is

of order εr , applying estimate in Lemma 3, equality (9), and the estimates Nε ≤ Cε−3r and
|J ε

n | ≤ Cε3(r−1), we conclude that

I2 ≤ Cε3r−2.

Thus, for r ∈ (2/3, 1), we have I1 → 0 and I2 → 0 as ε → 0.
To estimate the difference between boundary integral we have to extend cε , rε

f , and
rε
b from �∗

ε to �. For cε , we can consider the extension as in Lemma 2. Then, using the
extended c̃ε and the fact that the reaction rates and the initial data are defined on whole �

we can extend rε
f and rε

b to � as solutions of the ordinary differential equations with c̃ε

instead of cε

∂t r̃
ε
f = p(r̃ε

b ) − αε(x) c̃ε r̃ε
f + βε(x) r̃ε

b − df r̃ε
f in (0, T ) × �,

∂t r̃
ε
b = αε(x) c̃ε r̃ε

f − βε(x) r̃ε
b − db r̃ε

b on (0, T ) × �,

r̃ε
f (0, x) = rε

f 0(x), r̃ε
b (0, x) = rε

b0(x) in �.

(14)

The non-negativity of cε and the construction of the extension ensure that c̃ε is non-negative.
Then, in the same way as for rε

f and rε
b , using the properties of p and the non-negativity of

the coefficients and initial data, we obtain the non-negativity of r̃ε
f and r̃ε

b . Thus, adding the
equations for r̃ε

f and r̃ε
b , we obtain the boundedness of r̃ε

f and r̃ε
b in �T , i.e.

‖r̃ ε
f ‖L∞(�T ) + ‖r̃ε

b‖L∞(�T ) ≤ C.
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Differentiating equations in (14) with respect to x and using the estimate ‖∇ r̃ε
b‖L2(�) ≤

‖∇ r̃ε
b + ∇ r̃ε

f ‖L2(�) + ‖∇ r̃ε
f ‖L2(�), we obtain

‖∇ r̃ε
f ‖L∞(0,T ;L2(�)) + ‖∇ r̃ε

b‖L∞(0,T ;L2(�)) ≤ μ1‖∇ c̃ε‖L2(�T )

+ε−1μ2‖c̃ε‖L2(�T ) + ε−1μ3

[
‖r̃ε

f ‖L∞(�T ) + ‖r̃ε
b‖L∞(�T )

]
≤ μ4

(
1 + 1

ε

)
, (15)

where the constants μj , with j = 2, 3, 4, depend on the derivatives of α, β, and μj , with
j = 1, 2, 3, 4, are independent of ε. Hence, for each ε > 0, the extensions r̃ε

f , r̃ε
b , and c̃ε are

well-defined on the boundaries �̃ε of the locally periodic microstructure. In what follows
we shall use the same notation for a function and for its extension.

Notice that ε−1 in the estimates for ∇rε
f and ∇rε

b will be compensated by ε in the esti-
mate for the difference between neighbouring points in non-periodic and locally periodic
domains, respectively, i.e.

|εRxε
kj

Kxε
kj

y − εRxε
n
Kxε

n
y| ≤ Cε1+r (1 + ‖γ ′‖L∞(R))(1 + ‖∇K‖L∞(�)).

Then, for the boundary integrals, we have

ε

∣∣∣∣
∫

�ε

αεrε
f cεψdσε

x −
∫

�̃ε

α̃εrε
f cεψdσε

x

∣∣∣∣ ≤ I3 + I4

= ε

Nε∑
n=1

∑
j∈J ε

n

∣∣∣∣∣∣∣

∫
εKR

xε
kj

�+xε
kj

αεrε
f cεψdσε

x −
∫

εKR
xε
n
�+xε

kj

αεrε
f cεψdσε

x

∣∣∣∣∣∣∣

+ε

Nε∑
n=1

∑
j∈J ε

n

∣∣∣∣∣∣

∫
εKR

xε
n
�+xε

kj

αεrε
f cεψdσε

x −
∫

εKR
xε
n
�+xε

n+εDxε
n
j

α̃εrε
f cεψdσε

x

∣∣∣∣∣∣

for ψ ∈ C1(�T ), where KR
x = RxKx . Considering the regularity of K and R and the

uniform boundedness from below and above of | det K|, and using the trace estimate for the
L2(�)-norm of a Hς(Y )-function, with ς ∈ (1/2, 1), the first integral we can estimates as

I3 ≤ C1ε
d

Nε∑
n=1

∑
j∈J ε

n

∫
�

∣∣∣αεrε
f (t, ykε

j
)cε(t, ykε

j
) − αεrε

f (t, yκε
n
)cε(t, yκε

n
)

∣∣∣ dσy + C2ε
r

≤ C3

⎡
⎣ε

d+1
2

Nε∑
n=1

∑
j∈J ε

n

‖cε‖L2(�ε
n,j )

[∫
�

∣∣∣αε(ykε
j
) − αε(yκε

n
)

∣∣∣2 dσy

] 1
2

⎤
⎦

+C4ε
d

Nε∑
n=1

∑
j∈J ε

n

⎡
⎣
∫

Y

|cε(t, ykε
j
) − cε(t, yκε

n
)|2 + |rε

f (t, ykε
j
) − rε

f (t, yκε
n
)|2dy

+
∫

Y

∫
Y

|[cε(t, y1
kε
j
) − cε(t, y2

kε
j
)] − [cε(t, y1

κε
n
) − cε(t, y2

κε
n
)]|2

|y1 − y2|2ς+d
dy1dy2

+
∫

Y

∫
Y

|[rε
f (y1

kε
j
) − rε

f (y2
kε
j
)] − [rε

f (y1
κε
n
) − rε

f (y2
κε
n
)]|2

|y1 − y2|2ς+d
dy1dy2

⎤
⎦

1
2

×
[∫

�

(
|cε(ykε

j
)|2 + |rε

f (yκε
n
)|2
)

dσy

] 1
2 + C5ε

r ,
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where d = dim(�) = 3 and �ε
n,j = xε

kj
+ εKR

xε
kj

� = xε
kj

+ εRxε
kj

K(xε
kj

)�, with j ∈ J ε
n

and n = 1, . . . , Nε . Here, we used the short notations

ykε
j

= xε
kj

+ εKR
xε
kj

y, yκε
n

= xε
kj

+ εKR
xε
n
y,

yl
kε
j

= xε
kj

+ εKR
xε
kj

yl, yl
κε
n

= xε
kj

+ εKR
xε
n
yl for l = 1, 2.

Using the regularity of γ , K , and α, and applying a priori estimates for cε and rε
f , together

with (15), we obtain for 0 < ς1 < 1/2, with ς + ς1 = 1,

∫ T

0
I3dt ≤ μ1

Nε∑
n=1

∑
j∈J ε

n

ε

∫ T

0

[
‖∇rε

f ‖L2(Y ε
kj

) + ‖∇cε‖L2(Y ε
kj

) + ‖∇αε‖C(Y ε
kj

)

]
dt

×‖γ ′‖L∞(R)‖∇K‖L∞(�)

[
sup
j∈J ε

n

|xε
kj

− xε
n| + sup

j∈J ε
n

|xε
kj

− xε
n|ς1

]
+ μ1ε

r

≤ μες1r ,

where Y ε
kj

= xε
kj

+ εRxε
kj

Y1. Conducting similar calculations as for I3 and using the fact

that |xε
kj

− xε
n − Dxε

n
εj | ≤ C1|εj |2 ≤ C2ε

2r yield

∫ T

0
I4dt ≤ μ1

Nε∑
n=1

∑
j∈J ε

n

∫ T

0

[
‖∇rε

f ‖L2(Ỹ ε
n,j ) + ‖∇cε‖L2(Ỹ ε

n,j ) + ‖∇α̃ε‖C(Ỹ ε
n,j )

]
dt

×
(

ε1+r + ες

∣∣∣∣R−1
xε
kj

(x − xε
kj

) − R−1
xε
n

(x − xε
n) − Wxε

n
εj

∣∣∣∣
ς1
)

≤ μ
[
ε(2r−1)ς1 + εr

]
,

where ς + ς1 = 1 and Ỹ ε
n,j = xε

n + εRxε
n
Y1 + εDxε

n
j . In a similar way, we obtain the

estimates for the difference of the other two boundary integrals. Thus, we conclude that for
r ∈ (1/2, 1), the difference between the boundary integrals for non-periodic and locally
periodic microstructures converges to zero as ε → 0.

Notice that since the extensions of cε and rε
l , with l = f, b, are in L2(0, T ; H 1(�)) and

∂� is Lipschitz continuous, we can extend them to L2(0, T ; H 1(�1)) with � ⊂ �1.
Now, we rewrite the weak formulation of the microscopic equation for cε as

〈∂t c
ε − F(cε), φχ�∗

ε
〉�T

+ 〈A∇cε,∇φχ�∗
ε
〉�T

− ε〈βεrε
b − αεcεrε

f , φ〉�ε
T

=
[
〈∂t c

ε − F(cε), φχ�̃∗
ε
〉�T

+ 〈A∇cε, ∇φχ�̃∗
ε
〉�T

− ε〈β̃εrε
b − α̃εcεrε

f , φ〉�̃ε
T

]

+
[
〈∂t c

ε − F(cε), φ(χ�∗
ε
− χ�̃∗

ε
)〉�T

+ 〈A∇cε, ∇φ(χ�∗
ε
− χ�̃∗

ε
)〉�T

]

−ε
[
〈βεrε

b − αεcεrε
f , φ〉�ε

T
− 〈β̃εrε

b − α̃εcεrε
f , φ〉�̃ε

T

]
= I1 + I2 + I3

for φ ∈ C1(�T ). Notice that we use the same notation for cε , rε
f , and rε

b and their extensions.
The estimates for I1, I2, I3, and I4, shown above, and similar calculations for the dif-

ference of the boundary integrals of βεrε
b and β̃εrε

b , respectively, imply that I2 → 0 and
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I3 → 0 as ε → 0. Thus we obtain that

0 = lim
ε→0

[
〈∂t c

ε − F(cε), φχ�∗
ε
〉�T

+ 〈A∇cε, ∇φχ�∗
ε
〉�T

− ε〈βεrε
b − αεcεrε

f , φ〉�ε
T

]

= lim
ε→0

[
〈∂t c

ε − F(cε), φχ�̃∗
ε
〉�T

+ 〈A∇cε, ∇φχ�̃∗
ε
〉�T

− ε〈β̃εrε
b − α̃εcεrε

f , φ〉�̃ε
T

]
.

Similarly, we obtain that

0 = lim
ε→0

ε〈∂t r
ε
f − p(rε

b ) + αεcεrε
f − βεrε

b + df rε
f , φ〉�ε

T

= lim
ε→0

ε〈∂t r
ε
f − p(rε

b ) + α̃εcεrε
f − β̃εrε

b + df rε
f , φ〉�̃ε

T
,

0 = lim
ε→0

ε〈∂t r
ε
b − αεcεrε

f + βεrε
b + dbr

ε
b , φ〉�ε

T

= lim
ε→0

ε〈∂t r
ε
b − α̃εcεrε

f + β̃εrε
b + dbr

ε
b , φ〉�̃ε

T
for φ ∈ C1(�T ).

The definition of �̃∗
ε , �̃ε , α̃ε , and β̃ε implies that the original non-periodic problem is

approximated by equations posed in a domain with locally periodic microstructure. Hence
we can apply the methods of locally periodic two-scale convergence (l-t-s) and l-p unfolding
operator to derive the limit equations.

Using the extension of cε , we have that the sequences {cε}, {∇cε} and {∂t c
ε} are defined

on �T and we can determine T ε
L(cε), T ε

L(∇cε), ∂tT ε
L(cε), and T b,ε

L (cε). The properties of

T ε
L and T b,ε

L together with estimates (5a)–(5b) ensure

‖T ε
L(cε)‖L2(�T ×Y ) + ‖T ε

L(∇cε)‖L2(�T ×Y ) + ‖∂tT ε
L(cε)‖L2(�T ×Y ) ≤ C,

‖T b,ε
L (cε)‖L2(�T ×�) +

∑
j=f,b

‖T b,ε
L (rε

j )‖H 1(0,T ;L2(�×�)) ≤ C.

Then, the convergence results for the l-p unfolding operator and l-t-s convergence, see [29,
30] or Appendix, imply that there exist subsequences (denoted again by cε , rε

f and rε
b ) and

the functions c ∈ L2(0, T ;H 1(�)), ∂t c ∈ L2(�T ), c1 ∈ L2(�T ; H 1
per(Ỹx)), rf , rb ∈

H 1(0, T ;L2(�; L2(�̃x))) such that

T ε
L(cε) → c strongly in L2(�T ;H 1(Y )),

∂tT ε
L(cε) ⇀ ∂tc weakly in L2(�T × Y ),

T ε
L(∇cε) ⇀ ∇c + D−T

x ∇ỹ c1(·,Dx ·) weakly in L2(�T × Y ),

T b,ε
L (cε) → c strongly in L2(�T ;L2(�)),

rε
j ⇀ rj , ∂t r

ε
j ⇀ ∂rj l-t-s, rj , ∂t rj ∈ L2(�T ; L2(�̃x)),

T b,ε
L (rε

j ) ⇀ rj (·, ·, DxK̃x ·) weakly in L2(�T × �),

∂tT b,ε
L (rε

j ) ⇀ ∂t rj (·, ·, DxK̃x ·) weakly in L2(�T × �), j = f, b.

(16)

The coefficients α̃ε and β̃ε can be defined as locally periodic approximations of α̃ and
β̃, given by (13), i.e.,

α̃ε = Lε(̃α), β̃ε = Lε(β̃) with x̃ε
n = xε

n.

See Appendix or [29] for the definition of the locally periodic approximation Lε . The
regularity assumptions on α, β, K , and γ ensure that α̃, β̃ ∈ C(�;Cper(Ỹx)).

Considering ψε(t, x) = ψ1(t, x) + εLε
ρ(ψ2)(t, x), with ψ1 ∈ C1(�T ) and ψ2 ∈

C1
0 (�T ; C1

per(Ỹx)), as a test function in (3) (see Appendix or [29] for the definition of Lε
ρ)
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and applying l-p unfolding operator and l-p boundary unfolding operator imply

〈T ε
L(χε

�̃∗
ε
)∂tT ε

L(cε),T ε
L(ψε)〉�T ×Y + 〈AT ε

L(χε

�̃∗
ε
)T ε

L(∇cε),T ε
L(∇ψε)〉�T ×Y

= 〈T ε
L(χε

�̃∗
ε
)F (T ε

L(cε)),T ε
L(ψε)〉�T ×Y

+
〈

Nε∑
n=1

√
gxε

n√
g|Ỹxε

n
|
[
T b,ε
L (β̃εrε

b ) − T b,ε
L (̃αε)T b,ε

L (cε)T b,ε
L (rε

f )
]
χ�ε

n
,T b,ε

L (ψε)

〉

�T ×�

−〈A∇cε,∇ψε〉�∗
ε ,T

+〈F(cε)−∂t c
ε, ψε〉�∗

ε ,T
+ε〈β̃εrε

b − α̃εcεrε
f , ψε〉

�̃ε\�̂ε,T
+ δ(ε),

where δ(ε) → 0 as ε → 0, χε

�̃∗
ε

= Lε
0(χỸ ∗

x,K
) and χỸ ∗

x,K
is the characteristic function of

Ỹ ∗
x,K extended Ỹx-periodically to R

3.

The regularity assumptions on γ and K ensure that χỸ ∗
x,K

∈ L∞(
⋃

x∈�{x} × Ỹx) and

χỸ ∗
x,K

∈ C(�;L
p
per(Ỹx)) for p ∈ (1, +∞).

Applying the results from [30] we obtain T ε
L(χε

�̃∗
ε

)(x, ỹ) → χỸ ∗
x,K

(x,Dxỹ) in Lp(�×Y )

and T b,ε
L (β̃ε)(x, ȳ) → β̃(x, DxK̃xȳ), T b,ε

L (̃αε)(x, ȳ) → α̃(x,DxK̃xȳ) in Lp(� × �) for
p ∈ (1,+∞), as ε → 0.

Using the a priori estimates for cε , rε
f and rε

b , the strong convergence of T ε
L(cε) in

L2(�T ; H 1(Y )), the strong convergence and boundedness of T b,ε
L (̃αε), the weak conver-

gence and boundedness of T b,ε
L (rε

f ), together with the regularity of D, γ , and K , and the

strong convergence of T b,ε
L (ψε), we obtain

lim
ε→0

〈
Nε∑
n=1

√
gxε

n√
g|Ỹxε

n
|T

b,ε
L (̃αε)T b,ε

L (cε)T b,ε
L (rε

f )χ�ε
n
,T b,ε

L (ψε)

〉

�T ×�

=
〈 √

gx√
g|Ỹx |

α̃(x,DxK̃xȳ)c(t, x)rf (t, x,DxK̃xȳ), ψ1(t, x)

〉

�T ×�

.

Similar arguments along with the Lipschitz continuity of F and the strong convergence of
T ε
L(χε

�̃∗
ε

) ensure

〈T ε
L(χε

�̃∗
ε
) F (T ε

L(cε)),T ε
L(ψε)〉�T ×Y → 〈χỸ ∗

x,K
(x,Dxỹ) F (c), ψ1〉�T ×Y

as ε → 0. Using the convergence results (16), the strong convergence of T ε
L(ψε) and

T ε
L(∇ψε) and the fact that |�∗

ε | → 0 as ε → 0, taking the limit as ε → 0, and considering
the change of variables y = Dxỹ for ỹ ∈ Y and y = DxK̃xȳ for ȳ ∈ �, we obtain

〈|Ỹx |−1c, ψ1〉Ỹ ∗
x,K×�T

+ 〈|Ỹx |−1A(∇c + ∇yc1), ∇ψ1 + ∇yψ2〉Ỹ ∗
x,K×�T

+〈|Ỹx |−1 [̃α(x, y)rf c − β̃(x, y)rb
]
, ψ1〉�̃x×�T

= 〈|Ỹx |−1F(c), ψ1〉Ỹ ∗
x,K×�T

.

Considering ψ1(t, x) = 0 for (t, x) ∈ �T , we obtain

c1(t, x, y) =
3∑

j=1

∂xj
c(t, x)wj (x, y),

where wj are solutions of (12). Choosing ψ2(t, x, y) = 0 for (t, x) ∈ �T and y ∈ Ỹx yields
the macroscopic equation for c.
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Using the strong convergence of T b,ε
L (cε) in L2(�T ; L2(�)), estimates (5a)–(5b) and

(6), and the Lipschitz continuity of p we obtain that {T b,ε
L (rε

j )} is a Cauchy sequence in

L2(�T ; L2(�)) for j = f, b, and hence upto a subsequence, T b,ε
L (rε

j ) → rj (·, ·, DxK̃x ·)
strongly in L2(�T ;L2(�)). Then applying the l-p boundary unfolding operator to the equa-
tions on �̃ε and taking the limit as ε → 0 we obtain the equations for rf and rb. The proof
of the uniqueness of a solution of the macroscopic problem is similar to the corre- sponding
proof for the microscopic problem, and hence the convergence of the whole sequences of
solutions of the microscopic problem follows.

Remark 1 Notice that for the proof of the homogenization results it is sufficient to have a
local extension of cε from �∗

ε to �δ , with �δ = {x ∈ � : dist(x, ∂�) > δ} for any fixed
δ > 0, and hence, the local strong convergence of T ε

L(cε), i.e., the strong convergence in
L2(0, T ;L2

loc(�; H 1(Y ))).

Remark 2 For numerical computations of the cell problems (12) and the ordinary differ-
ential equations (11), defining the dynamics of receptor densities, approaches from the
two-scale finite element method [24] or the heterogeneous multiscale method [1, 2, 17, 18]
can be applied.
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Appendix: Definition and Convergence Results for the l-t-s Convergence
and l-p Unfolding Operator

We shall consider the space C(�; Cper(Ỹx)) given in a standard way, i.e. for any ψ̃ ∈
C(�; Cper(Y )) the relation ψ(x, y) = ψ̃(x,D−1

x y) with x ∈ � and y ∈ Ỹx yields
ψ ∈ C(�;Cper(Ỹx)). In the same way the spaces Lp(�; Cper(Ỹx)), Lp(�; L

q
per(Ỹx)) and

C(�; L
q
per(Ỹx)), for 1 ≤ p ≤ ∞, 1 ≤ q < ∞, are given.

Due to the assumptions on D, i.e. D ∈ Lip(�) and 0 < d0 ≤ | det D(x)| ≤ d1 < ∞
for all x ∈ �, we obtain that the function u : � → C(Ỹx) is well-defined. The separability
of Cper(Ỹx) for each x ∈ � and the Weierstrass approximation for continuous functions
u : � → Cper(Ỹx) ensure the separability of C(�; Cper(Ỹx)). Also, we have the following
relation for the norm ‖ψ‖C(�;Cper(Ỹx )) := supx∈� supy∈Ỹx

|ψ(x, y)|:
‖ψ‖C(�;Cper(Ỹx )) = sup

x∈�

sup
y∈Ỹx

|ψ̃(x,D−1
x y)| = sup

x∈�

sup
ỹ∈Y

|ψ̃(x, ỹ)|.

The assumptions on D and K ensure that

L2(�; H 1(Ỹx)) = {u ∈ L2(�; L2(Ỹx)), ∇yu ∈ L2(�;L2(Ỹx)
3)} and

L2(�;L2(�̃x)) = {
u : ∪x∈�

({x} × �̃x

)→ R measurable, with

u(x) ∈ L2(�̃x) for a.e. x ∈ � and
∫

�

‖u‖2
L2(�̃x )

dx < ∞
}

http://creativecommons.org/licenses/by/4.0/
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are well-defined, separable Hilbert spaces, see e.g. [16, 26, 32].
Consider ψ ∈ C(�; Cper(Ỹx)) and corresponding ψ̃ ∈ C(�;Cper(Y )). As a locally

periodic (l-p) approximation of ψ , we name Lε : C(�; Cper(Ỹx)) → L∞(�) given by,
see [29],

(Lεψ)(x) =
Nε∑
n=1

ψ̃

(
x,

D−1
xε
n

(x − x̃ε
n)

ε

)
χ�ε

n
(x) for x ∈ �. (17)

We consider also the map Lε
0 : C(�; Cper(Ỹx)) → L∞(�) defined for x ∈ � as

(Lε
0ψ)(x) =

Nε∑
n=1

ψ

(
xε
n,

x − x̃ε
n

ε

)
χ�ε

n
(x) =

Nε∑
n=1

ψ̃

(
xε
n,

D−1
xε
n

(x − x̃ε
n)

ε

)
χ�ε

n
(x).

If we choose x̃ε
n = Dxε

n
εk for some k ∈ Z

3, then the periodicity of ψ̃ implies

(Lεψ)(x) =
Nε∑
n=1

ψ̃

(
x,

D−1
xε
n

x

ε

)
χ�ε

n
(x), (Lε

0ψ)(x) =
Nε∑
n=1

ψ̃

(
xε
n,

D−1
xε
n

x

ε

)
χ�ε

n
(x)

for x ∈ �, see e.g. [29] for more details. In the similar way, we define Lεψ and Lε
0ψ for ψ

in C(�; L
q
per(Ỹx)) or Lp(�;Cper(Ỹx)).

We define also a regular approximation of Lεψ

(Lε
ρψ)(x) =

Nε∑
n=1

ψ̃

(
x,

D−1
xε
n

x

ε

)
φ�ε

n
(x) for x ∈ �,

where φ�ε
n

are approximations of χ�ε
n

such that φ�ε
n

∈ C∞
0 (�ε

n) and

Nε∑
n=1

|φ�ε
n
− χ�ε

n
| → 0 in L2(�), ‖∇mφ�ε

n
‖L∞(Rd ) ≤ Cε−ρm for 0 < r < ρ < 1.

We recall here the definition of locally periodic two-scale (l-t-s) convergence and l-p
unfolding operator, see [29, 30] for details.

Definition 2 ([29]) Let uε ∈ Lp(�) for all ε > 0 and 1 < p < ∞. We say the sequence
{uε} converges l-t-s to u ∈ Lp(�; Lp(Ỹx)) as ε → 0 if ‖uε‖Lp(�) ≤ C and for any
ψ ∈ Lq(�;Cper(Ỹx))

lim
ε→0

∫
�

uε(x)Lεψ(x)dx =
∫

�

−
∫

Ỹx

u(x, y)ψ(x, y)dydx,

where Lε is the l-p approximation of ψ and 1/p + 1/q = 1.

Definition 3 ([30]) A sequence {uε} ⊂ Lp(�̃ε), with 1 < p < ∞, is said to converge
locally periodic two-scale (l-t-s) to u ∈ Lp(�; Lp(�̃x)) if

ε‖uε‖p

Lp(�̃ε)
≤ C

and for any ψ ∈ C(�; Cper(Ỹx))

lim
ε→0

ε

∫
�̃ε

uε(x)Lεψ(x)dσx =
∫

�

1

|Ỹx |
∫

�̃x

u(x, y)ψ(x, y)dσydx,

where Lε is the l-p approximation of ψ defined in (17).
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Lemma 4 ([30]) For ψ ∈ C(�;Cper(Ỹx)) and 1 ≤ p < ∞, we have that

lim
ε→0

ε

∫
�̃ε

|Lεψ(x)|pdσx =
∫

�

1

|Ỹx |
∫

�̃x

|ψ(x, y)|pdσydx.

Definition 4 ([30]) For any Lebesgue-measurable on � function ψ the locally periodic
unfolding operator (l-p unfolding operator) T ε

L is defined as

T ε
L(ψ)(x, y) =

Nε∑
n=1

ψ
(
εDxε

n

[
D−1

xε
n

x/ε
]
Y

+ εDxε
n
y
)

χ
�̂ε

n
(x)

for x ∈ � and y ∈ Y .

The definition implies that T ε
L(φ) is Lebesgue-measurable on � × Y and is zero for

x ∈ �ε , where �ε =⋃Nε

n=1(�
ε
n \ �̂ε

n) ∩ �.

Definition 5 ([30]) For any Lebesgue-measurable on �̃ε function ψ the l-p boundary
unfolding operator T b,ε

L is defined as

T b,ε
L (ψ)(x, y) =

Nε∑
n=1

ψ
(
εDxε

n

[
D−1

xε
n

x/ε
]
Y

+ εDxε
n
K̃xε

n
y
)

χ
�̂ε

n
(x)

for x ∈ � and y ∈ �.

These definitions provide a generalization of the periodic unfolding operator and periodic
boundary unfolding operator introduced in [12–14] to locally periodic microstructures.

Theorem 2 ([30]) For a sequence {wε} ⊂ Lp(�), with p ∈ (1, ∞), satisfying

‖wε‖Lp(�) + ε‖∇wε‖Lp(�) ≤ C

there exist a subsequence (denoted again by {wε}) and w ∈ Lp(�;W
1,p
per (Ỹx)) such that

T ε
L(wε) ⇀ w(·,Dx ·) weakly in Lp(�; W 1,p(Y )),

εT ε
L(∇wε) ⇀ D−T

x ∇yw(·,Dx ·) weakly in Lp(� × Y ).

Theorem 3 ([30]) For a sequence {wε} ⊂ W 1,p(�), with p ∈ (1, ∞), that converges
weakly to w in W 1,p(�), there exist a subsequence (denoted again by {wε}) and a function
w1 ∈ Lp(�; W

1,p
per (Ỹx)) such that

T ε
L(wε) ⇀ w weakly in Lp(�;W 1,p(Y )),

T ε
L(∇wε)(·, ·) ⇀ ∇xw(·) + D−T

x ∇yw1(·, Dx ·) weakly in Lp(� × Y ).

Theorem 4 ([30]) For a sequence {wε} ⊂ Lp(�̃ε), with p ∈ (1, ∞), satisfying

ε‖wε‖p

Lp(�̃ε)
≤ C

there exist a subsequence (denoted again by {wε}) and w ∈ Lp(�;Lp(�̃x)) such that

wε → w locally periodic two-scale (l-t-s).
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Theorem 5 ([30]) Let {wε} ⊂ Lp(�̃ε) with ε‖wε‖p

Lp(�̃ε)
≤ C, where p ∈ (1, ∞). The

following assertions are equivalent

(i) wε → w l-t-s, w ∈ Lp(�; Lp(�̃x)).
(ii) T b,ε

L (wε) ⇀ w(·,DxK̃x ·) weakly in Lp(� × �).

Theorems 4 and 5 imply that for {wε} ⊂ Lp(�̃ε) with ε‖wε‖p

Lp(�̃ε)
≤ C we have the

weak convergence of {T b,ε
L (wε)} in Lp(� × �), where p ∈ (1, ∞).

References

1. Abdulle, A.: The finite element heterogeneous multiscale method: a computational strategy for multi-
scale PDEs. GAKUTO Int. Ser. Math. Sci. Appl. 31, 133–181 (2009)

2. Abdulle, A., Weinan, E., Engquist, B., Vanden-Eijnden, E.: The heterogeneous multiscale method. Acta
Numer. 21, 1–87 (2012)

3. Alexandre, R.: Homogenization and θ − 2 convergence. Proc. Roy. Soc. Edinb. 127A, 441–455 (1997)
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19. Hornung, J., Jäger, W.: Diffusion, convection, adsorption, and reaction of chemicals in porous media. J.

Differ. Equ. 92, 199–225 (1991)
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