17,698 research outputs found

    Chiral SU(3) Symmetry and Strangeness

    Get PDF
    In this talk we review recent progress on the systematic evaluation of the kaon and antikaon spectral functions in dense nuclear matter based on a chiral SU(3) description of the low-energy pion-, kaon- and antikaon-nucleon scattering data.Comment: 9 pages, 4 figures, invited talk given by M.F.M.L. at the SQM2001 conferenc

    Chiral symmetry, strangeness and resonances

    Full text link
    We review the important role played by the chiral SU(3) symmetry in predicting the properties of antikaons and hyperon resonances in cold nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. The formation of baryon resonances as implied by chiral coupled-channel dynamics is discussed. Results for antikaon and hyperon-resonance spectral functions are presented for isospin symmetric and asymmetric matter.Comment: invited talk presented by M.F.M.L. at the 18th Nishinomiya Yukawa Memorial Symposium, 21 pages, 12 figure

    Mrk 1014: An AGN Dominated ULIRG at X-rays

    Full text link
    In this paper we report on an XMM-Newton observation of the ultraluminous infrared QSO Mrk 1014. The X-ray observation reveals a power-law dominated (photon index of about 2.2) spectrum with a slight excess in the soft energy range. AGN and starburst emission models fit the soft excess emission equally well, however, the most plausible explanation is an AGN component as the starburst model parameter, temperature and luminosity, appear physically unrealistic. The mean luminosity of Mrk 1014 is about 2 times 10^44 erg s^-1. We have also observed excess emission at energies greater than 5 keV. This feature could be attributed to a broadened and redshifted iron complex, but deeper observations are required to constrain its origin. The light curve shows small scale variability over the 11 ks observation. There is no evidence of intrinsic absorption in Mrk 1014. The X-ray observations support the notion of an AGN dominated central engine. We establish the need for a longer observation to constrain more precisely the nature of the X-ray components.Comment: 5 pages incl. 3 figures, MNRAS in pres

    Quark-mass dependence of baryon resonances

    Get PDF
    We study the quark-mass dependence of J^P = \frac12^- s-wave and J^P = \frac32^- d-wave baryon resonances. Parameter-free results are obtained in terms of the leading order chiral Lagrangian. In the 'heavy' SU(3) limit with m_\pi =m_K \simeq 500 MeV the s-wave resonances turn into bound states forming two octets plus a singlet representations of the SU(3) group. Similarly the d-wave resonances turn into bound states forming an octet and a decuplet in this limit. A contrasted result is obtained in the 'light' SU(3) limit with m_\pi =m_K \simeq 140 MeV for which no resonances exist.Comment: 8 pages, three figures, talk presented at HYP200

    Locating Star-Forming Regions in Quasar Host Galaxies

    Full text link
    We present a study of the morphology and intensity of star formation in the host galaxies of eight Palomar-Green quasars using observations with the Hubble Space Telescope. Our observations are motivated by recent evidence for a close relationship between black hole growth and the stellar mass evolution in its host galaxy. We use narrow-band [O II] λ\lambda3727, Hβ\beta, [O III] λ\lambda5007 and Paα\alpha images, taken with the WFPC2 and NICMOS instruments, to map the morphology of line-emitting regions, and, after extinction corrections, diagnose the excitation mechanism and infer star-formation rates. Significant challenges in this type of work are the separation of the quasar light from the stellar continuum and the quasar-excited gas from the star-forming regions. To this end, we present a novel technique for image decomposition and subtraction of quasar light. Our primary result is the detection of extended line-emitting regions with sizes ranging from 0.5 to 5 kpc and distributed symmetrically around the nucleus, powered primarily by star formation. We determine star-formation rates of order a few tens of M_\odot/yr. The host galaxies of our target quasars have stellar masses of order 101110^{11} M_\odot and specific star formation rates on a par with those of M82 and luminous infrared galaxies. As such they fall at the upper envelope or just above the star-formation mass sequence in the specific star formation vs stellar mass diagram. We see a clear trend of increasing star formation rate with quasar luminosity, reinforcing the link between the growth of the stellar mass of the host and the black hole mass found by other authors.Comment: Accepted for publication in M.N.R.A.

    A nonlinear drift which leads to κ\kappa-generalized distributions

    Full text link
    We consider a system described by a Fokker-Planck equation with a new type of momentum-dependent drift coefficient which asymptotically decreases as 1/p-1/p for a large momentum pp. It is shown that the steady-state of this system is a κ\kappa-generalized Gaussian distribution, which is a non-Gaussian distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings of APFA

    Fractional Langevin equation

    Full text link
    We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both sub- and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-law behavior. Here we show that their lowest moments are actually all identical, except the second moment of the velocity. This provides a simple criterion which enables to distinguish these two non-Markovian processes.Comment: 4 page

    Interferometric Observations of the Nuclear Region of Arp220 at Submillimeter Wavelengths

    Get PDF
    We report the first submillimeter interferometric observations of an ultraluminous infrared galaxy. We observed Arp220 in the CO J=3-2 line and 342GHz continuum with the single baseline CSO-JCMT interferometer consisting of the Caltech Submillimeter Observatory (CSO) and the James Clerk Maxwell Telescope (JCMT). Models were fit to the measured visibilities to constrain the structure of the source. The morphologies of the CO J=3-2 line and 342GHz continuum emission are similar to those seen in published maps at 230 and 110GHz. We clearly detect a binary source separated by about 1 arcsec in the east-west direction in the 342GHz continuum. The CO J=3-2 visibility amplitudes, however, indicate a more complicated structure, with evidence for a compact binary at some velocities and rather more extended structure at others. Less than 30% of the total CO J=3-2 emission is detected by the interferometer, which implies the presence of significant quantities of extended gas. We also obtained single-dish CO J=2-1, CO J=3-2 and HCN J=4-3 spectra. The HCN J=4-3 spectrum, unlike the CO spectra, is dominated by a single redshifted peak. The HCN J=4-3/CO J=3-2, HCN J=4-3/HCN J=1-0 and CO J=3-2/2-1 line ratios are larger in the redshifted (eastern) source, which suggests that the two sources may have different physical conditions. This result might be explained by the presence of an intense starburst that has begun to deplete or disperse the densest gas in the western source, while the eastern source harbors undispersed high density gas.Comment: 17 pages, 9 figures, 4 Tables. accepted by Ap

    High-ionization mid-infrared lines as black hole mass and bolometric luminosity indicators in active galactic nuclei

    Get PDF
    We present relations of the black hole mass and the optical luminosity with the velocity dispersion and the luminosity of the [Ne V] and the [O IV] high-ionization lines in the mid-infrared (MIR) for 28 reverberation-mapped active galactic nuclei. We used high-resolution Spitzer Infrared Spectrograph and Infrared Space Observatory Short Wavelength Spectrometer data to fit the profiles of these MIR emission lines that originate from the narrow-line region of the nucleus. We find that the lines are often resolved and that the velocity dispersion of [Ne V] and [O IV] follows a relation similar to that between the black hole mass and the bulge stellar velocity dispersion found for local galaxies. The luminosity of the [Ne V] and the [O IV] lines in these sources is correlated with that of the optical 5100A continuum and with the black hole mass. Our results provide a means to derive black hole properties in various types of active galactic nuclei, including highly obscured systems.Comment: accepted for publication in ApJ

    Catastrophic Failure Modes Assessment of the International Space Station Alpha

    Get PDF
    This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration
    corecore