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We study the quark-mass dependence of JP = 1
2

−
s-wave and JP = 3

2

−
d-wave baryon

resonances. Parameter-free results are obtained in terms of the leading order chiral La-
grangian. In the ’heavy’ SU(3) limit with mπ = mK ≃ 500 MeV the s-wave resonances
turn into bound states forming two octets plus a singlet representations of the SU(3)
group. Similarly the d-wave resonances turn into bound states forming an octet and a
decuplet in this limit. A contrasted result is obtained in the ’light’ SU(3) limit with
mπ = mK ≃ 140 MeV for which no resonances exist.

1. Introduction

The meson-baryon scattering processes are an important test for effective field theories
which aim at reproducing QCD at small energies, where the effective degrees of freedom
are hadrons rather than quarks and gluons. The task to construct a systematic effective
field theory for the meson-baryon scattering processes in the resonance region is closely
linked to the fundamental question as to what is the ’nature’ of baryon resonances. Here
we support the conjecture [1,2,3,4] that baryon resonances not belonging to the large-Nc

ground states are generated dynamically by coupled-channel dynamics [5,6,7,8,9,10]. For
a comprehensive discussion of this issue we refer to [4]. This conjecture was the basis of
the phenomenological model [3], which generated successfully non-strange s- and d-wave
resonances by coupled-channel dynamics describing a large body of pion and photon scat-
tering data. Before the event of the quark-model it was already suggested by Wyld [5] and
also by Dalitz, Wong and Rajasekaran [6] that a t-channel vector meson exchange model
for the s-wave meson-baryon scattering problem has the potential to dynamically gener-
ate s-wave baryon resonances upon solving a coupled-channel Schrödinger equation. In a
more modern language the t-channel exchange was rediscovered in terms of the Weinberg-
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Tomozawa (WT) interaction, the leading term of the chiral Lagrangian that reproduces
the first term of the vector meson exchange in an appropriate Taylor expansion [11]. The
main difference of the early attempts from computations based on the chiral Lagrangian
is the way the coupled-channel scattering equation is regularized and renormalized. The
crucial advance over the last years in this field is therefore a significant improvement of
the systematics, i.e. how to implement corrections terms into coupled-channel dynamics
[12,1,2].

In recent works [1,2,12,13,14], which will be reviewed here, it was shown that chiral
dynamics provides a parameter-free prediction for the existence of a wealth of strange and
non-strange s- and d-wave wave baryon resonances, once the crossing symmetry constraint
is implemented properly. Naively one may expect that chiral dynamics does not make
firm predictions for d-wave resonances since the meson baryon-octet interaction in the
relevant channels probes a set of counter terms presently unknown. However, this is not
necessarily so. Since a d-wave baryon resonance couples to s-wave meson baryon-decuplet
states chiral symmetry is quite predictive for such resonances under the assumption that
the latter channels are dominant. This is in full analogy to the analysis of the s-wave
resonances [5,6,7,8,9,13,15,16] that neglects the effect of the contribution of d-wave meson
baryon-decuplet states. The empirical observation that the d-wave resonances N(1520),
N(1700) and ∆(1700) have large branching fractions (> 50%) into the inelastic Nππ
channel, even though the elastic πN channel is favored by phase space, supports our
assumption.

2. Effective field theory of chiral coupled-channel dynamics

The starting point to describe the meson-baryon scattering process is the chiral SU(3)
Lagrangian (see e.g.[17]). A systematic approximation scheme arises due to a successful
scale separation justifying the chiral power counting rules [18]. Our effective field theory
of the meson-baryon scattering processes is based on the assumption that the scattering
amplitudes are perturbative at subthreshold energies with the expansion parameter Q/Λχ.
The small scale Q is to be identified with any small momentum of the system. The chiral
symmetry breaking scale is

Λχ ≃ 4πf ≃ 1.13 GeV ,

with the parameter f ≃ 90 MeV determined by the pion decay process. Once the avail-
able energy is sufficiently high to permit elastic two-body scattering a further typical
dimensionless parameter m2

K/(8 πf 2) ∼ 1 arises [12,1,2]. Since this ratio is uniquely
linked to two-particle reducible diagrams it is sufficient to sum those diagrams keeping
the perturbative expansion of all irreducible diagrams, i.e. the coupled-channel Bethe-
Salpeter equation has to be solved. This is the basis of the χ-BS(3) approach developed
in [12,1,2,19,20].

At leading order in the chiral expansion one encounters the Weinberg-Tomozawa [11]
interaction,

LWT =
i

8 f 2
tr

(

(B̄ γµ B) · [Φ, (∂µΦ)]−
)

+
3 i

8 f 2
tr

(

(B̄ν γµ Bν) · [Φ, (∂µΦ)]−
)

, (1)

where we dropped additional structures that do not contribute to the on-shell scattering
process at tree level. The terms in (1) constitute the leading order s-wave interaction of
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Goldstone bosons (Φ) with the baryon-octet (B) and baryon-decuplet (Bµ) states. The
octet and decuplet fields, Φ, B and Bµ, posses an appropriate matrix structure according
to their SU(3) tensor representation.

The scattering process is described by the amplitudes that follow as solutions of the
Bethe-Salpeter equation,

T (k̄, k; w) = V (k̄, k; w) +
∫

d4l

(2π)4
V (k̄, l; w) G(l; w) T (l, k; w) ,

G(l; w) = −i D(1
2
w − l) S(1

2
w + l) , (2)

where we suppress the coupled-channel structure for simplicity. The meson and baryon
propagators, D(q) and S(p), are used in the notation of [3]. We apply the convenient
kinematics:

w = p + q = p̄ + q̄ , k = 1
2
(p − q) , k̄ = 1

2
(p̄ − q̄) , (3)

where q, p, q̄, p̄ the initial and final meson and baryon 4-momenta. The Bethe-Salpeter
scattering equation is recalled for the case of meson baryon-octet scattering. An analogous
equation holds for meson baryon-decuplet scattering process (see e.g. [3]). Referring to the
detailed discussion given in [2,21,22,23] we assume a systematic on-shell reduction of the
Bethe-Salpeter interaction kernel leading to the effective interaction V used in (2). The
latter is is expanded according to chiral power counting rules. The scattering amplitude
T (k̄, k; w) decouples into various sectors characterized by isospin (I) and strangeness (S)
quantum numbers. In the case of meson baryon-octet and baryon-decuplet scattering the
following channels are relevant

(I, S)[8⊗8] = (0,−3), (1,−3), (
1

2
,−2), (

3

2
,−2), (0,−1),

(1,−1), (2,−1), (
1

2
, 0), (

3

2
, 0), (0, 1), (1, 1) ,

(I, S)[8⊗10] = (
1

2
,−4), (0,−3), (1,−3), (

1

2
,−2), (

3

2
,−2), (0,−1),

(1,−1), (2,−1), (
1

2
, 0), (

3

2
, 0), (

5

2
, 0), (1, 1), (2, 1) . (4)

Following the χ-BS(3) approach developed in [2,3] the effective interaction kernel is decom-
posed into a set of covariant projectors that have well defined total angular momentum,
J , and parity, P ,

V (k̄, k; w) =
∑

J,P

V (J,P )(
√

s )Y (J,P )(q̄, q, w) . (5)

The merit of the projectors is that they decouple the Bethe-Salpeter equation (2) into
orthogonal sectors labelled by the total angular momentum, J , and parity, P . We insist
on the renormalization condition,

T (I,S)(k̄, k; w)
∣

∣

∣√
s=µ(I,S)

= V (I,S)(k̄, k; w)
∣

∣

∣√
s=µ(I,S)

, (6)

together with the natural choice for the subtraction points,

µ(I, +1) = µ(I,−3) = 1
2
(mΛ + mΣ) , µ(I, 0) = mN ,

µ(0,−1) = mΛ, µ(1,−1) = mΣ , µ(I,−2) = µ(I,−4) = mΞ (7)
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as explained in detail in [2]. The renormalization condition reflects the crucial assumption
our effective field theory is based on, namely that at subthreshold energies the scattering
amplitudes can be evaluated in standard chiral perturbation theory. This is achieved by
supplementing (2) with (6,7). The subtraction points (7) are the unique choices that
protect the s-channel baryon-octet masses manifestly in the p-wave J = 1

2
scattering

amplitudes. The merit of the scheme [12,1,2] lies in the property that for instance the
K Ξ and K̄ Ξ scattering amplitudes match at

√
s ∼ mΞ approximately as expected from

crossing symmetry. In [2] we suggested to glue s- and u-channel unitarized scattering
amplitudes at subthreshold energies. This construction reflects our basic assumption
that diagrams showing an s-channel or u-channel unitarity cut need to be summed to all
orders at least at energies close to where the diagrams develop their imaginary part. By
construction, a glued scattering amplitude satisfies crossing symmetry exactly at energies
where the scattering process takes place. At subthreshold energies crossing symmetry is
implemented approximatively only, however, to higher and higher accuracy when more
chiral correction terms are considered. Insisting on the renormalization condition (6,7)
guarantees that subthreshold amplitudes match smoothly and therefore the final ’glued’
amplitudes comply with the crossing-symmetry constraint to high accuracy. The natural
subtraction points (7) can also be derived if one incorporates photon-baryon inelastic
channels. Then additional constraints arise. For instance the reaction γ Ξ → γ Ξ, which
is subject to a crossing symmetry constraint at threshold, may go via the intermediate
states K̄ Λ or K̄ Σ.

The perturbative nature of subthreshold amplitudes, a crucial assumption of the χ-
BS(3) approach proposed in [12,1,2], is not necessarily true in phenomenological coupled-
channel schemes in [24,19,20,25,26,16]. Using the subtraction scales as free parameters, as
advocated in [25,26,16], may be viewed as promoting the counter terms of chiral order Q3

to be unnaturally large. If the subtraction scales are chosen far away from their natural
values (7) the resulting loop functions are in conflict with chiral power counting rules [12].
Though unnaturally large Q3 counter terms can not be excluded from first principals one
should check such an assumption by studying corrections terms systematically [1,2]. A de-
tailed test of the naturalness of the Q3 counter terms was performed within the χ-BS(3)
scheme [2] demonstrating good convergence in the channels studied without any need
for promoting the counter terms of order Q3. Possible correction terms in the approach
followed in [25,26,16] have so far not been studied systematically for meson-baryon scat-
tering. Moreover, if the scheme advocated in [25,26,16] were applied in all eleven isospin

strangeness sectors with JP = 1
2

−
a total number of 26 subtraction parameters arise. This

should be compared with the only ten counter terms of chiral order Q3 contributing to
the on-shell scattering amplitude at that order [2]. Selecting only the operators that are
leading in the large-Nc limit of QCD out of the ten Q3 operators only four survive [2].
For consistency and before applying the approach of [25,26,16] to all isospin strangeness
channels, it would be highly desirable to address the above mismatch of parameters. Our
scheme has the advantage that once the parameters describing subleading effects are de-
termined in a subset of sectors one has immediate predictions for all sectors (I, S). A
mismatch of the number of parameters is avoided altogether since the Q3 counter terms
enter the effective interaction kernel directly.

Given the subtraction scales (7) the leading order calculation is parameter free. Of
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course chiral correction terms do lead to further so far unknown parameters which need
to be adjusted to data. Within the χ−BS(3) approach such correction terms enter the
effective interaction kernel V rather than leading to subtraction scales different from (7)
as it is assumed in [25,26,16]. In particular the leading correction effects are determined
by the counter terms of chiral order Q2. The effect of altering the subtraction scales away
from their optimal values (7) can be compensated for by incorporating counter terms in
the chiral Lagrangian that carry order Q3.

3. Baryon resonances from chiral SU(3) symmetry

We begin with a discussion of the s- and d-wave baryon resonance spectrum that arises
in the SU(3) limit. The latter is not defined uniquely depending on the magnitude of
the current quark masses, mu = md = ms. We consider two scenarios [13,14]. In the
’light’ SU(3) limit the current quark masses are chosen such that one obtains mπ =
mK = mη = 140 MeV. The second case, the ’heavy’ SU(3) limit, is characterized by
mπ = mK = mη = 500 MeV. In the SU(3) limit meson baryon-octet scattering is classified
according to,

8 ⊗ 8 = 27 ⊕ 10 ⊕ 10 ⊕ 8 ⊕ 8 ⊕ 1 . (8)

The leading order chiral Lagrangian predicts attraction in the two octet and the sin-
glet channels but repulsion in the 27-plet and decuplet channels. As a consequence in
the ’heavy’ SU(3) limit the chiral dynamics predicts two degenerate octet bound states
together with a non-degenerate singlet state [5,6,7,8,9,13,16,13,14]. In the ’light’ SU(3)

limit all states disappear. In the JP = 3
2

−
sector the Weinberg-Tomozawa interaction is

attractive in the octet, decuplet and 27-plet channels, but repulsive in the 35-plet channel,

8 ⊗ 10 = 35 ⊕ 27 ⊕ 10 ⊕ 8 . (9)

Therefore one may expect resonances or bound states in the former channels. Indeed, in
the ’heavy’ SU(3) limit we find 72 = 4 × (8 + 10) bound states in this sector forming an
octet and decuplet representation of the SU(3) group. We do not find a 27-plet-bound
state reflecting the weaker attraction in that channel. However, if we artificially increase
the amount of attraction by about 40 % by lowering the value of f in the Weinberg-
Tomozawa term, a clear bound state arises in this channel also. A contrasted result is
obtained if we lower the meson masses down to the pion mass arriving at the ’light’
SU(3) limit. Then we find neither bound nor resonance octet or decuplet states. This
pattern is a clear prediction of chiral coupled-channel dynamics which should be tested
with unquenched QCD lattice simulations [27].

We look for poles on the Second Riemann Sheet of our s-wave scattering amplitudes.
Positions of the poles determine masses and widths of the resonances while the residues
in the different channels define the branching ratios [19,20]. To explore the quark mass
dependence of the resonances, we vary the averaged up and down quark masses, but keep
fixed the antikaon mass. A parameter x is introduced in terms of which the pion mass
varies as

m2
π

∣

∣

∣

SU(3)
= m2

π + x(m2
K − m2

π), x ∈ [0, 1] . (10)
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Figure 1. Masses and decay widths of two octets and a singlet of baryon states for several values of
the pion mass. For each baryon state we plot eleven points, which correspond to eleven equally spaced
values of x (see (10)) ranging from 1 (first point from the right) to 0 (first point from the left). Widths
of different baryon resonances have been scaled by factors, as it is detailed in the legend of the plots. To
disentangle among different states, for some of them, the widths have been shifted by constants factors.
Lines have been plotted just to guide the eye.

A pair (m2
K , m2

π|SU(3)) determines the η meson mass via the Gell-Mann–Oakes–Renner
relation. Given the SU(3) symmetry breaking parameters b0, bD and bF of [2], the masses
of the baryon octet (N(940), Λ(1115), Σ(1190) and Ξ(1320)) are also determined. In the
limit x = 1 our SU(3) pion is as heavy as the real kaon, while when x = 0 the physical
world is recovered approximatively. As demonstrated in Fig. 1 we find a remarkable
success predicting rather well the bulk of the features of the four stars N(1535), Λ(1405)
and Λ(1670) resonances [13].

We also find a narrow resonance with (I, S) = (1,−1), though it appears in the unphys-
ical 11000 sheet (see [19,13]). In Fig. 1 the trajectory of this pole is labelled with Σ(1620),
a two star resonance, since it couples strongly to the πΛ, πΣ and specially to the K̄N
channels. There exists also a pole in the 11100 sheet with MR = 1466 MeV and ΓR = 574
MeV not shown in Fig. 1. It is above the K̄N threshold and has a large coupling to the
KΞ channel. This very broad pole is precisely the one quoted in [15]. It does not influence
the physical scattering at all. However, chiral corrections reduce its width significantly
and take its mass closer to the KΞ threshold indicating that it is the three star Σ(1750)
resonance [2]. Fig. 1 shows also the fate of the second (I, S) = (1

2
, 0) state, which is

moved far away from the real axis down to quite low energies. Chiral corrections appear
not to take the position of this pole closer to that of the physical N(1650) resonance [2].
A quantitative description may require the inclusion of further inelastic channels, like π∆
and ρN [3]

In the S = −2 sector we find two resonances, which can clearly be identified to the
Ξ(1690) and Ξ(1620) resonances. Of particular interest is the signal for the Ξ(1690)
resonance, where we find a quite small (large) coupling to the πΞ (K̄Σ) channel, which
explains the smallness of the experimental ratio, Γ(πΞ)/Γ(K̄Σ) < 0.09 [28] despite of the
significant energy difference between the thresholds for the πΞ and K̄Σ channels. On the
other hand, we also find a third Λ resonance placed also below the K̄N threshold and
with a large coupling to the πΣ channel. This confirms the findings of the recent works
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Figure 2. Diagonal speed plots of the JP = 3

2

−

sector. The vertical lines show the positions of inelastic
meson baryon-decuplet channels. Parameter-free results are obtained in terms of physical masses and
f = 90 MeV.

[16,15,20], where the dynamics of the Λ(1405) states was studied.

In Fig. 2 speed plots of the JP = 3
2

−
sector are shown for all channels in which octet

and decuplet resonance states are expected. In [14] we generalized the notion of a speed
[29] to the case of coupled-channels in way that the latter reveals the coupling strength of
a given resonance to any channel, closed or open. If a resonance with not too large decay
width sits in the amplitude a clear peak structure emerges in the speed plot even if the
resonance structure is masked by a background phase. In the case of s-wave scattering
thresholds induce square-root singularities which should not be confused with a resonance
signal. It is a remarkable success of the χ-BS(3) approach that it predicts the four star
hyperon resonances Ξ(1820), Λ(1520), Σ(1670) with masses quite close to the empirical
values. The nucleon and isobar resonances N(1520) and ∆(1700) also present in Fig.
2, are predicted with less accuracy. The important result here is the fact that those
resonances are generated at all. It should not be expected to obtain already fully realistic
results in this leading-order calculation. For instance chiral correction terms are expected
to provide a d-wave π ∆-component of the N(1520). We continue with the peak in the (0,-
3)-speeds at mass 1950 MeV. Since this is below all thresholds it is in fact a bound state.
Such a state has so far not been observed but is associated with a decuplet resonance
[30]. Further states belonging to the decuplet are seen in the (1

2
,−2)- and (1,−1)-speeds

at masses 2100 MeV and 1920 MeV. The latter state can be identified with the three-star
Ξ(1940) resonance. Finally we point at the fact that the (0,−1)-speeds show signals of
two resonance states consistent with the existence of the four star resonance Λ(1520) and
Λ(1690) even though in the ’heavy’ SU(3) limit we observed only one bound state. It
appears that the SU(3) symmetry breaking pattern generates the ’missing’ state in this
particular sector by promoting the weak attraction of the 27-plet contribution in (9).
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4. Summary

In this talk we reported on recent progress in the understanding of baryon resonances
based on chiral-coupled channel dynamics. The reader was introduced to an effective field
theory formulation of chiral coupled-channel dynamics. Leading order results predict the
existence of s- and d-wave baryon resonances with a spectrum remarkably close to the
empirical pattern without any adjustable parameters. The formation of resonances is a
consequence of the chiral SU(3) symmetry of QCD, i.e. in an effective field theory, that
was based on the chiral SU(2) symmetry only, no resonances would be formed.
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