5,362 research outputs found

    DNA polymerases required for repair of UV-induced damage in Saccharomyces cerevisiae

    Get PDF
    The ability of yeast DNA polymerase mutant strains to carry out repair synthesis after UV irradiation was studied by analysis of postirradiation molecular weight changes in cellular DNA. Neither DNA polymerase alpha, delta, epsilon, nor Rev3 single mutants evidenced a defect in repair. A mutant defective in all four of these DNA polymerases, however, showed accumulation of single-strand breaks, indicating defective repair. Pairwise combination of polymerase mutations revealed a repair defect only in DNA polymerase delta and epsilon double mutants. The extent of repair in the double mutant was no greater than that in the quadruple mutant, suggesting that DNA polymerases alpha and Rev3p play very minor, if any, roles. Taken together, the data suggest that DNA polymerases delta and epsilon are both potentially able to perform repair synthesis and that in the absence of one, the other can efficiently substitute. Thus, two of the DNA polymerases involved in DNA replication are also involved in DNA repair, adding to the accumulating evidence that the two processes are coupled

    Testing fish freshness by using a mechanical probe

    Get PDF

    Resolving the Axial Mass Anomaly in neutrino Scattering

    Full text link
    We present a parametrization of the observed enhancement in the transverse electron quasielastic (QE) response function for nucleons bound in carbon as a function of the square of the four momentum transfer (Q2) in terms of a correction to the magnetic form factors of bound nucleons. The parametrization should also be applicable to the transverse cross section in neutrino scattering. If the transverse enhancement originates from meson exchange currents (MEC), then it is theoretically expected that any enhancement in the longitudinal or axial contributions is small. We present the predictions of the "Transverse Enhancement" model (which is based on electron scattering data only) for the neutrino and anti-neutrino differential and total QE cross sections for nucleons bound in carbon. The 2Q2 dependence of the transverse enhancement is observed to resolve much of the long standing discrepancy ("Axial Mass Anomaly}) in the QE total cross sections and differential distributions between low energy and high energy neutrino experiments on nuclear targets.Comment: 3 pages, 3 Figures, Presented by Arie Bodek at the 19th Particles and Nuclei International Conference, PANIC 2011, MIT, Cambridge, MA July 201

    The Nuclease Activity of the Yeast Dna2 Protein, Which Is Related to the RecB-like Nucleases, Is Essential in Vivo

    Get PDF
    Saccharomyces cerevisiae Dna2 protein is required for DNA replication and repair and is associated with multiple biochemical activities: DNA-dependent ATPase, DNA helicase, and DNA nuclease. To investigate which of these activities is important for the cellular functions of Dna2, we have identified separation of function mutations that selectively inactivate the helicase or nuclease. We describe the effect of six such mutations on ATPase, helicase, and nuclease after purification of the mutant proteins from yeast or baculovirus-infected insect cells. A mutation in the Walker A box in the C-terminal third of the protein affects helicase and ATPase but not nuclease; a mutation in the N-terminal domain (amino acid 504) affects ATPase, helicase, and nuclease. Two mutations in the N-terminal domain abolish nuclease but do not reduce helicase activity (amino acids 657 and 675) and identify the putative nuclease active site. Two mutations immediately adjacent to the proposed nuclease active site (amino acids 640 and 693) impair nuclease activity in the absence of ATP but completely abolish nuclease activity in the presence of ATP. These results suggest that, although the Dna2 helicase and nuclease activities can be independently affected by some mutations, the two activities appear to interact, and the nuclease activity is regulated in a complex manner by ATP. Physiological analysis shows that both ATPase and nuclease are important for the essential function of DNA2 in DNA replication and for its role in double-strand break repair. Four of the nuclease mutants are not only loss of function mutations but also exhibit a dominant negative phenotype

    Fiber R and D for the CMS HCAL

    Get PDF
    This paper documents the fiber R and D for the CMS hadron barrel calorimeter (HCAL). The R and D includes measurements of fiber flexibility, splicing, mirror reflectivity, relative light yield, attenuation length, radiation effects, absolute light yield, and transverse tile uniformity. Schematics of the hardware for each measurement are shown. These studies are done for different diameters and kinds of multiclad fiber.Comment: 23 pages, 30 Figures 89 pages, 41 figures, corresponding author: H. Budd, [email protected]

    Поліетилен як наймасовіша пластмаса у виробництві упаковки

    Get PDF
    Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla
    corecore