research

Resolving the Axial Mass Anomaly in neutrino Scattering

Abstract

We present a parametrization of the observed enhancement in the transverse electron quasielastic (QE) response function for nucleons bound in carbon as a function of the square of the four momentum transfer (Q2) in terms of a correction to the magnetic form factors of bound nucleons. The parametrization should also be applicable to the transverse cross section in neutrino scattering. If the transverse enhancement originates from meson exchange currents (MEC), then it is theoretically expected that any enhancement in the longitudinal or axial contributions is small. We present the predictions of the "Transverse Enhancement" model (which is based on electron scattering data only) for the neutrino and anti-neutrino differential and total QE cross sections for nucleons bound in carbon. The 2Q2 dependence of the transverse enhancement is observed to resolve much of the long standing discrepancy ("Axial Mass Anomaly}) in the QE total cross sections and differential distributions between low energy and high energy neutrino experiments on nuclear targets.Comment: 3 pages, 3 Figures, Presented by Arie Bodek at the 19th Particles and Nuclei International Conference, PANIC 2011, MIT, Cambridge, MA July 201

    Similar works

    Full text

    thumbnail-image

    Available Versions