2,309 research outputs found

    Observing trajectories with weak measurements in quantum systems in the semiclassical regime

    Full text link
    We propose a scheme allowing to observe the evolution of a quantum system in the semiclassical regime along the paths generated by the propagator. The scheme relies on performing consecutive weak measurements of the position. We show how weak trajectories" can be extracted from the pointers of a series of measurement devices having weakly interacted with the system. The properties of these "weak trajectories" are investigated and illustrated in the case of a time-dependent model system.Comment: v2: Several minor corrections were made. Added Appendix (that will appear as Suppl. Material). To be published in Phys Rev Let

    Analytical perturbative approach to periodic orbits in the homogeneous quartic oscillator potential

    Full text link
    We present an analytical calculation of periodic orbits in the homogeneous quartic oscillator potential. Exploiting the properties of the periodic Lam{\'e} functions that describe the orbits bifurcated from the fundamental linear orbit in the vicinity of the bifurcation points, we use perturbation theory to obtain their evolution away from the bifurcation points. As an application, we derive an analytical semiclassical trace formula for the density of states in the separable case, using a uniform approximation for the pitchfork bifurcations occurring there, which allows for full semiclassical quantization. For the non-integrable situations, we show that the uniform contribution of the bifurcating period-one orbits to the coarse-grained density of states competes with that of the shortest isolated orbits, but decreases with increasing chaoticity parameter α\alpha.Comment: 15 pages, LaTeX, 7 figures; revised and extended version, to appear in J. Phys. A final version 3; error in eq. (33) corrected and note added in prin

    Thermodynamics of a Trapped Unitary Fermi Gas

    Get PDF
    We present the first model-independent comparison of recent measurements of the entropy and of the critical temperature of a unitary Fermi gas, performed by Luo et al., with the most complete results currently available from finite temperature Monte Carlo calculations. The measurement of the critical temperature in a cold fermionic atomic cloud is consistent with a value Tc=0.23(2)epsilonFT_c=0.23(2)epsilon_F in the bulk, as predicted by the present authors in their Monte Carlo calculations.Comment: 5 pages, 4 figures, published versio

    Anomalous Fisher-like zeros for the canonical partition function of noninteracting fermions

    Full text link
    Noninteracting fermions, placed in a system with a continuous density of states, may have zeros in the NN-fermion canonical partition function on the positive real β\beta axis (or very close to it), even for a small number of particles. This results in a singular free energy, and instability in other thermal properties of the system. In the context of trapped fermions in a harmonic oscillator, these zeros are shown to be unphysical. By contrast, similar bosonic calculations with continuous density of states yield sensible results.Noninteracting fermions, placed in a system with a continuous density of states yield sensible results.Comment: 5 pages and 5 figure

    Occurrence of periodic Lam\'e functions at bifurcations in chaotic Hamiltonian systems

    Get PDF
    We investigate cascades of isochronous pitchfork bifurcations of straight-line librating orbits in some two-dimensional Hamiltonian systems with mixed phase space. We show that the new bifurcated orbits, which are responsible for the onset of chaos, are given analytically by the periodic solutions of the Lam\'e equation as classified in 1940 by Ince. In Hamiltonians with C_2v{2v} symmetry, they occur alternatingly as Lam\'e functions of period 2K and 4K, respectively, where 4K is the period of the Jacobi elliptic function appearing in the Lam\'e equation. We also show that the two pairs of orbits created at period-doubling bifurcations of touch-and-go type are given by two different linear combinations of algebraic Lam\'e functions with period 8K.Comment: LaTeX2e, 22 pages, 14 figures. Version 3: final form of paper, accepted by J. Phys. A. Changes in Table 2; new reference [25]; name of bifurcations "touch-and-go" replaced by "island-chain

    Semiclassical description of shell effects in finite fermion systems

    Get PDF
    A short survey of the semiclassical periodic orbit theory, initiated by M. Gutzwiller and generalized by many other authors, is given. Via so-called semiclassical trace formmulae, gross-shell effects in bound fermion systems can be interpreted in terms of a few periodic orbits of the corresponding classical systems. In integrable systems, these are usually the shortest members of the most degenerate families or orbits, but in some systems also less degenerate orbits can determine the gross-shell structure. Applications to nuclei, metal clusters, semiconductor nanostructures, and trapped dilute atom gases are discussed.Comment: LaTeX (revteX4) 6 pages; invited talk at Int. Conference "Finite Fermionic Systems: Nilsson Model 50 Years", Lund, Sweden, June 14-18, 200

    Phase-shift analysis of low-energy π±p\pi^{\pm}p elastic-scattering data

    Full text link
    Using electromagnetic corrections previously calculated by means of a potential model, we have made a phase-shift analysis of the π±p\pi^\pm p elastic-scattering data up to a pion laboratory kinetic energy of 100 MeV. The hadronic interaction was assumed to be isospin invariant. We found that it was possible to obtain self-consistent databases by removing very few measurements. A pion-nucleon model was fitted to the elastic-scattering database obtained after the removal of the outliers. The model-parameter values showed an impressive stability when the database was subjected to different criteria for the rejection of experiments. Our result for the pseudovector πNN\pi N N coupling constant (in the standard form) is 0.0733±0.00140.0733 \pm 0.0014. The six hadronic phase shifts up to 100 MeV are given in tabulated form. We also give the values of the s-wave scattering lengths and the p-wave scattering volumes. Big differences in the s-wave part of the interaction were observed when comparing our hadronic phase shifts with those of the current GWU solution. We demonstrate that the hadronic phase shifts obtained from the analysis of the elastic-scattering data cannot reproduce the measurements of the πp\pi^- p charge-exchange reaction, thus corroborating past evidence that the hadronic interaction violates isospin invariance. Assuming the validity of the result obtained within the framework of chiral perturbation theory, that the mass difference between the uu- and the dd-quark has only a very small effect on the isospin invariance of the purely hadronic interaction, the isospin-invariance violation revealed by the data must arise from the fact that we are dealing with a hadronic interaction which still contains residual effects of electromagnetic origin.Comment: 43 pages, 6 figure

    Uniform semiclassical trace formula for U(3) --> SO(3) symmetry breaking

    Get PDF
    We develop a uniform semiclassical trace formula for the density of states of a three-dimensional isotropic harmonic oscillator (HO), perturbed by a term r4\propto r^4. This term breaks the U(3) symmetry of the HO, resulting in a spherical system with SO(3) symmetry. We first treat the anharmonic term in semiclassical perturbation theory by integration of the action of the perturbed periodic HO orbits over the manifold C\mathbb{C}P2^2 which characterizes their 4-fold degeneracy. Then we obtain an analytical uniform trace formula which in the limit of strong perturbations (or high energy) asymptotically goes over into the correct trace formula of the full anharmonic system with SO(3) symmetry, and in the limit ϵ\epsilon (or energy) 0\to 0 restores the HO trace formula with U(3) symmetry. We demonstrate that the gross-shell structure of this anharmonically perturbed system is dominated by the two-fold degenerate diameter and circular orbits, and {\it not} by the orbits with the largest classical degeneracy, which are the three-fold degenerate tori with rational ratios ωr:ωϕ=N:M\omega_r:\omega_\phi=N:M of radial and angular frequencies. The same holds also for the limit of a purely quartic spherical potential V(r)r4V(r)\propto r^4.Comment: LaTeX (revtex4), 26pp., 5 figures, 1 table; final version to be published in J. Phys. A (without appendices C and D

    Simple Analytical Particle and Kinetic Energy Densities for a Dilute Fermionic Gas in a d-Dimensional Harmonic Trap

    Full text link
    We derive simple analytical expressions for the particle density ρ(r)\rho(r) and the kinetic energy density τ(r)\tau(r) for a system of noninteracting fermions in a dd-dimensional isotropic harmonic oscillator potential. We test the Thomas-Fermi (TF, or local-density) approximation for the functional relation τ[ρ]\tau[\rho] using the exact ρ(r)\rho(r) and show that it locally reproduces the exact kinetic energy density τ(r)\tau(r), {\it including the shell oscillations,} surprisingly well everywhere except near the classical turning point. For the special case of two dimensions (2D), we obtain the unexpected analytical result that the integral of τTF[ρ(r)]\tau_{TF}[\rho(r)] yields the {\it exact} total kinetic energy.Comment: 4 pages, 4 figures; corrected versio
    corecore