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We present the first model-independent comparison of recent measurements of the entropy and of the
critical temperature of a unitary Fermi gas, performed by Luo et al., with the most complete results
currently available from finite temperature Monte Carlo calculations. The measurement of the critical
temperature in a cold fermionic atomic cloud is consistent with a value Tc � 0:23�2�"F in the bulk, as
predicted by the present authors in their Monte Carlo calculations.
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The study of the properties of a Fermi gas in the unitary
regime (when the s-wave scattering length a is large
compared to the average interparticle separation) emerged
as one of the most fascinating theoretical many-body prob-
lems since it was first formulated by Bertsch as the Many-
Body X (MBX) challenge in 1999 [1,2]. The experimental
investigation of the unitary Fermi gas (UFG) began with its
realization in cold atomic traps by O’Hara et al. at Duke
University three years later [3]. At unitarity (often referred
to as ‘‘at resonance’’), when a! 1, the properties of such
a system are governed by deceptively simple laws. In
particular, the ground state energy per particle is given
by E=N � 3"F�=5, where "F � @

2k2
F=2m is the Fermi

energy of a noninteracting Fermi gas with the same number
density n � N=V � k3

F=3�2. The determination of the
dimensionless constant � was the subject of the MBX
challenge and the best current accepted value was deter-
mined a bit later through restricted/fixed node Monte Carlo
(MC) calculations as � � 0:42�1� [4–7]. This value was
confirmed by the zero temperature extrapolation of unre-
stricted MC calculations of Ref. [8], where � � 0:44�3�
was obtained. Theoretically, it was also found that this
system is superfluid at low temperatures and the value of
the pairing gap was estimated at zero temperature to be
� � 0:504�24�"F [4–6]. (For lack of space we quote and
comment here only on theoretical results obtained in con-
trolled MC calculations, where the errors are typically,
though not always, only of statistical origin. In all other
theoretical approaches that we are aware of, the errors are
essentially impossible to quantify due to the lack of any
identifiable small parameter.) A number of finite tempera-
ture thermodynamic properties of the homogeneous phase
were determined as well [8–11], even though there is still
some disagreement concerning the exact value of the criti-
cal temperature Tc. The temperature dependence of the
pairing gap has not been determined yet. On the experi-
mental side there is a quite wide spread in values of the
dimensionless parameter � [12] determined in various ex-
periments. However, the latest experiments seem to con-
verge, possibly guided by the existence of firm theoretical

results, to the expected value: 0.74(7) [3], 0.51(4) [13],
0:32�0:13

�0:10 [14], 0.36(15) [15], 0.46(5) [16], 0.45(5) [17],
0.41(15) [18]. The measurements of the pairing gap are still
in their infancy. Although it has been conclusively demon-
strated that a UFG is superfluid at sufficiently low tem-
peratures [19], the extraction of the value of the pairing gap
has been attempted in one experiment only [20] and this
value is significantly smaller than the theoretical prediction
[4–6]. Such a small value of the pairing gap is inconsistent
with the value of Tc measured independently [13,21]. In
Ref. [21], Tc was found by first determining the entropy
and the energy of such a system, a procedure which allows
an absolute temperature scale to be established. In this
experiment a number of properties of the atomic cloud
were determined in the unitary regime. The cloud was
then adiabatically brought to the BCS side of the
Feshbach resonance, where kFa � �0:75 (here kF is the
Fermi momentum corresponding to the central density of
the cloud). In this regime �kFjaj< 1) one can use many-
body perturbation theory [22] in conjunction with the local
density approximation (LDA) to evaluate various cloud
properties (see Ref. [7] for a comparison of MC results
with perturbative many-body results). Measurements of the
energy of the cloud can thus be related, using theory, to
temperature and entropy. Since the entropy is conserved,
by measuring the energy of the cloud one can determine
the energy-entropy dependence in the unitary regime and
its absolute temperature as well [from T � @E�S; N�=@S].
Most of the atomic trapping potentials used in these experi-
ments can be approximated rather well with harmonic
potential wells. Such potentials can be shown to satisfy
the virial theorem at unitarity, namely E�T;N� � 2NhUi �
3m!2

zhz2i [23], and therefore simply measuring the spatial
shape of the cloud allows for a unique determination of the
UFG energy at any temperature. One of the main goals of
the present work is to present a critical analysis of the
results of this experiment [21], in the light of available
finite temperature MC calculations. This work thus repre-
sents the first model-independent comparison of a full
theory directly with experiment.
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At unitarity (1=kFa � 0) the pressure of a homogeneous
UFG is determined by a universal function hT�z�:
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where T and � are the temperature and the chemical
potential, respectively. Remembering that the grand ca-
nonical potential is ��V; T;�� � �VP �T;�� one can
easily show that the energy of the system reads: E �
3PV=2, where V is the volume of the system. Following
a reasoning [24] similar to that in Ref. [25] one can show
that thermodynamic stability implies positivity hT�z� � 0
and convexity h00T�z� � 0. In the high-temperature limit
�! �1 and P �T;�� tends from above to the free
Fermi gas pressure. In the low-temperature limit P �T;��
tends from above to P �0; �"F� � 4�"5=2

F �=5. Similarly, at
all temperatures the pressure calculated in the BCS or
mean-field approximation will give a variational estimate
from below of P �T;��. In Fig. 1 we illustrate these state-
ments and plot the results of three finite temperature MC
calculations [8–10]. It is not possible to extract the data for
this plot from Ref. [11]. The results of Ref. [10] stand apart
from the rest of the theoretical and experimental results.
While the results [8] agree with these bounds, three out of
the six calculated points in Ref. [9] (one of the lowest T
with highest z and two at the highest T with lowest z)
slightly violate them. The point at �=T � 3:24 is approxi-

mately where the authors of Ref. [9] claim that the normal-
superfluid phase transition occurs.

We use our MC results [8] (with a spatial lattice size 8�
8� 8) to generate smooth interpolation formulas for the
energy, chemical potential, and entropy (see inset of
Fig. 1). Standard manipulations show that all the UFG
thermodynamic potentials can be expressed in terms of a
single function of one variable, a property known as uni-
versality [8,9,26]. This property was incorporated in our
interpolation. At high temperatures we notice that our
results smoothly approach the corresponding free Fermi
gas results with some offsets for the energy, chemical
potential, and entropy [8].

At this point we assume that the LDA can be used to
describe the properties of an atomic cloud in a trap. There
has been no systematic study of the accuracy of LDA in the
unitary regime. We can, however, easily estimate the role
of the gradient corrections for a noninteracting Fermi gas
in an anisotropic harmonic trap. Using methods described
in [27] one can show that the ground state energy of a two-
component fermion system in an anisotropic harmonic trap
is given by

 E�N� �
@��3N�4=3

4
�

@ �!�3N�2=3

8
	1� esc�N�
; (2)

where � � �!x!y!z�
1=3 and �! � �!2

x �!2
y �!2

z�=3�.
In this formula the first term is the leading LDA contribu-
tion. Naively, one would expect the next to leading order
LDA correction to be proportional to N. It is a peculiarity
of harmonic potentials, however, that the leading gradient
corrections start at next order instead, namely, at O�N2=3�
[27]. At the same order one finds the so-called shell cor-
rection to the energy, given in this formula by
@ �!�3N�2=3esc�N�=8. The function esc�N� has a vanishing
average over particle number, is minimum when a shell is
filled and maximum in the middle of a shell. This term
depends strongly on the asymmetry of the harmonic po-
tential and has maximum amplitude for spherical poten-
tials. In such case the amplitude of esc�N� is about 0.5,
while it is significantly smaller for asymmetric wells.
Finite temperatures [27] and pairing, even at unitarity
[28], have a smoothing effect on the shell energy correction
term, but do not affect in any other major way the remain-
ing leading gradient correction term. At temperatures close
to Tc one would expect the gradient corrections to play a
noticeable role in the description of the pairing properties
[29]. However, close to Tc the pairing energy represents a
relatively small contribution to the total energy, and so the
errors in the total energy from using naive LDA around Tc
are likely to be small too. In a trap, the fraction of particles
that are close to loosing superfluidity [namely for which
x�r � T="F�r�� � xc � 0:23�2�, where xc is the critical
temperature in natural units [8] ] is also small. All in all,
it appears that for the mostly harmonic traps used in typical
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FIG. 1 (color online). MC data from Ref. [8] [blue (or dark
gray) circles], Ref. [9] (six black points) and Ref. [10] (black
crosses). The four straight lines starting at the origin are the T !
0 limits of hT�z! 1� � 22=5z=�3=5, where � � 0:25�2� [10],
� � 0:42 [6,7], � � 0:59 for mean-field or BCS approximation,
and � � 1 for the free Fermi gas model, respectively. The two
solid lines [red (lower) and green (higher)] correspond to hT�z�
calculated in the free Fermi gas and the BCS (or mean-field)
approximation hT�z�, respectively. In the inset we show the fits to
MC data [8].
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experiments the role of the gradient corrections is rela-
tively small and LDA is a reasonable approximation.

In this approach, the grand canonical thermodynamic
potential for a UFG confined by an external potential U�r�
is a functional of the local density n�r� given by

 � �
Z
dV

�
3

5
"F�r�’�x�n�r� �U�r�n�r� � �n�r�

�
; (3)

where

 x �
T

"F�r�
; "F�r� �

@
2

2m
	3�2n�r�
2=3; (4)

and we have used the universal form for the free energy per
particle F=N in the unitary regime:
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where for a homogeneous system ��x� � 5E=3"FN,
��x� � S=N is the entropy per particle and x � T="F
(see inset in Fig. 1). The overall chemical potential � and
the temperature T are constant throughout the system. The
density profile will depend on the shape of the trap as
dictated by ��=�n�r� � 0, which results in

 

��

�n�r�
�
��F� �N�
�n�r�

� ��x�r���U�r� � �: (6)

At a given T and �, Eqs. (4) and (6) completely determine
the density profile n�r� [and consequently both E�T;N� and
S�T;N�] in a given trap for a given total particle number.
The only experimental input we have used is the particle
number, the trapping potential, and the scattering length at
B � 1200 G, taken from Ref. [21]. The potential was
assumed to be an ‘‘isotropic‘‘ Gaussian, although it is not
entirely clear to us to what extent this is accurate, espe-
cially in the axial direction. We have approximated the
properties of the atomic cloud at B � 840 G with those at
unitarity (B � 834 G), where we have MC data. For B �
840 G and for the parameters of the Duke experiment [21]
one obtains 1=kFa � �0:06, using data of Ref. [30], if the
Fermi momentum corresponds to the central density of the
cloud at T � 0.

Our results for the entropy of the cloud and the density
profiles for several temperatures, are shown in Figs. 2 and
3. In all the figures the temperature is measured in natural
units of "F�0�, corresponding to the actual central density
of the cloud at that specific temperature. In Refs. [13,21]
the temperature is expressed in units of the Fermi energy at
T � 0 in a harmonic trap: "ho

F � @��3N�1=3. It is clear
from Fig. 3 that the central density decreases with T and
that the superfluid core disappears at Tc � 0:23�2�"F�0�,
which translates into Tc � 0:27�3�"ho

F to be compared to
Tc � 0:29�2�"ho

F of Ref. [21]. There is a noticeable system-
atic difference between theory and experiment at high
energies, see Fig. 2. This discrepancy can be attributed to
the fact that the experiment was performed slightly off

resonance, on the BCS side, where 1=kFa � �0:06.
Even though theory will soon be extended to this region
of 1=kFa, a proper normalization of theory vs experiment
demands experimental results exactly at resonance.

In Fig. 4 we show our results for the rms radius, in the
form of the ratio of the mean square axial cloud size hz2i at
kFa � �0:75 to its value at unitarity, as a function of the
energy relative to the ground state. This dependence illus-
trates the relation between the energies of the cloud (re-
lated in turn to the spatial profiles via the virial theorem) at
two different values of the magnetic field, but at the same
value of the entropy. The quality of the agreement between
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FIG. 3 (color online). The radial (along shortest axis) density
profiles of the Duke cloud at various temperatures, as determined
theoretically using the quantum Monte Carlo results [8]. The
dotted blue (or dark gray) line shows the superfluid part of the
cloud, for which x�r� � T="F�r� � 0:23. The solid red (or gray)
line shows the part of the system that is locally normal. Here
a2

ho � @=m!max.

0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E(T)/E
0

S
(T

)/
N

10.1

10
0

10
−1

10
−2

(E
−

E
(0

))
/E

0

T/ε
F
(0)
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our theoretical calculations and experimental data demon-
strates the soundness of the entire procedure to determine
the entropy and the temperature scale for the UFG. In
experiments, one can determine the value Ec of the energy
at the transition temperature without knowing the value of
the temperature itself, simply by noticing the appearance
of a kink in E vs S or vs ‘‘empirical’’ T [13]. Specifically, it
was determined in Refs. [13,21] that Ec � E�Tc� �
E�0� � 0:41�5�E0, to be compared with what we find
theoretically for such a system Ec � 0:32E0. Similarly, it
was determined in Ref. [21] that Sc � S�Tc�=N � 2:7�2�,
to be compared with our result Sc � 2:15. We have iden-
tified Tc with the disappearance of the superfluid core,
which occurs according to our MC data at Tc �
0:23�2�"F; see Fig. 3. Our MC results are also consistent
with a slightly higher Tc � 0:25"F, which would lead to
Ec � 0:36E0 and Sc � 2:6 and thus to an almost ‘‘perfect’’
agreement between theory and experiment. As mentioned
above, however, an experiment exactly at unitarity is
highly desirable, along with more precise MC data, in
order to definitely settle the remaining discrepancies. The
values for the energy Ec and entropy Sc are particularly
interesting because their determination does not require
knowledge of Tc and can be directly confronted with the
MC calculations of Burovski et al. [9]. At low tempera-
tures, the lowest three values of E�T� of Ref. [9] agree with
our own MC results [8]. The three highest temperature
points, however, have in our opinion significant systematic
errors (see Ref. [8] and comments in regards to Fig. 1). We
might safely assume that the energy prediction based on
MC data [9] should not differ noticeably from ours.
However, a Tc � 0:152�7�"F will instead result in Ec �
0:16E0. Similarly, Ref. [9] determines S�Tc�=N � 0:2�2�,
which leads to Sc � 1:5. One should notice that a recent

analysis [31] of the damping of sound modes [32] is also
consistent with Sc � 2:7.
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